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ABSTRACT

This report presents a brief summary of the principal results obtained in

a research program on damage development in fibrous composite laminates. The

following technical subjects are described:

(i) Effect of transverse cracks

and fiber breaks on stiffness changes in unidirectional and laminated plates.

(i1) Effect of ply thickness on initial failure and on progressive cracking in

brittle matrix laminates, and (iii) Analysis of progressive cracking in metal

and polymer composite laminates.
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1.

INTRODUCTION

This research project was conducted as a cooperative effort of two inves-

tigators. Dr. George J. Dvorak was the principal investigator of the program

at Rensselaer Polytechnic Institute, which was the primary contractor. Dr.

Norman Laws was the principal investigator of the part of the program sub-

contracted from RPI to the University of Pittsburgh.

The program addressed several basic problems in damage mechanics of both

brittle and ductile fibrous composite materials, and produced many new results.

The principal accomplishments can be summarized as follows:

l.

2.

Formulation of self-consistent and bounding techniques for a deterministic
evaluation of stiffness changes caused by transverse cracks or by fiber
breaks in plies of any orientation in fibrous laminates. The accuracy of
stiffness predictions obtained from the self-consistent method was verified
by comparison with available and our own experimental data.

Evaluation of the effect of ply thickness on initial failure and on pro-
gressive cracking in polymer matrix laminates under incrementally increas-
ing load. The significant conclusion obtained in the analysis, and in the
related experimental confirmation, was that damage development in such
brittle matrix laminates could be retarted or completely eliminated by
keeping the thickness of each ply to a minimum.

Analysis of progressive cracking in metal and polymer composite laminates.
In this effort we were able to predict stiffness changes which were ob-
served experimentally under monotonically increasing loads in glass and
graphite/epoxy laminates. Also, we analyzed the p. cess of fatigue damage
development in metal matrix B/Af laminates, which is caused by cyclic

plastic straining of the matrix., We found that damage in this system
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served as a shakedown mechanism which allowed the composite to resume an 5kﬁﬁi

elastic deformation response in the saturation damage state. An incremen-
tal procedure was formulated to find the stiffness changes associated with

saturation damage states reached under any steady-state loading program.
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The predicted stiffness changes were found to be in excellent agreement

with experimentally measured magnitudes.

These principal findings, together with other related results are de-

scribed in the sequel. X
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2, SIGNIFICANT ACHIEVEMENTS

2.1 Loss of Stiffness

The first important technical results obtained in the course of this re-
search relate to the loss of stiffness of unidirectional composites, or indi-
vidual plies in a laminate, due to transverse matrix cracks and due to fiber
breaks aund consequent aligned penny-shaped cracks. The general analysis of
Laws, Dvorak and Hejazi [l1] was simplified and, for transverse matrix (slit)
cracks the self-consistent results were extensively discussed by Dvorak, Laws
and Hejazi [2]. Subsequently these results were favorably compared by Laws
and Dvorak [3] with some exact results of Delameter, Herrmann and Barnett [4],
see Table 1. Further, Dvorak and Laws [5] showed that the predictions of the
self-consistent model were in good agreement with the experimental data of
Highsmith and Reifsnider [6] for (0,903)g E-glass epoxy laminates, see Fig. I.
In addition we note that the model may be used to give results for transverse
cracking of (903,0)¢ laminates. However, Highsmith [7) advises that the
reported (6] data for (903,0)g E~glass epoxy laminates is not reliable.

It is worth noting here that the model developed by the present authors

i'l‘ ¢

[3,5] is entirely consistent [8] with bounds obtained by Hashin [9] for the )
X TX]
ety e
loss of stiffness of cracked laminates. "'5"
P

¢ ()
At the time of writing, a popular alternative to the self-consistent %?i“ﬁ
win A

M

model is the differential scheme. We remark that the first application of the

‘. \» - l'
R
differential scheme to cracked solids was given by Laws and Dvorak [10]. As 9‘33&
LY () "'
far as cracked laminates are concerned, it is straightforward to use the dif-~ jt”\&
AV

ferential scheme rather than the self-consistent scheme in the Dvorak-Laws @
Ntag
model for cracked laminates. Indeed, in many cases, the results are almost gg}i;
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o)
'\\. ¢
3 AN

NS
SN
.l’l!l 3 Q'u‘t‘o‘!‘|‘l‘. [} c‘.O‘u‘.l o.l‘l" t!.'.l‘.'.“i. L) ) h..l. (% -D' L A .c’ \- -’ ,‘ ' . ' ; ‘\~\~.."f\'.:-'-\."\'xi%:ﬂ; ::\’&"::.;::i:



identical.

We emphasize that the Dvorak-Law model for the loss of stiffness of
cracked laminates is completely deterministic in the sense that the mode} does
not contain any adjustable parameters.

Next we turn to the analysis of fiber breaks in a unidirectional com-
posite, or in an individual ply of a laminate. An esséntial prerequisite to
this study 1s the analysis of crack opening displacements by Laws [10]. It
is, perhaps, relevant to point out that the analysis of Laws [10] corrects a
rather serious error in the literature. The paper by Laws and Dvorak [11]

breaks new ground in many important areas. In particular we gave

(i) the self-consistent model for the loss of stiffness of a unidirec-
tional composite due to fiber breaks accompanied by penny-shaped
cracks at the ends of the broken fibers,

(ii) the differential scheme for the same protlem,
(iii) the appropriate Hashin-Shtrikman bound for cracked solids,

(1v) a sucecinct derivation of the Mori~Tanaka [12] model which showed
that the model coincided with the Hashin-Shtrikman bound,

(v) a complete numerical comparison of the various models, see e.g.
Figs. 2, 3,

(vi) the calculation of various energy release rates, thus indicating

the likelihood of multiple cracking rather than the catastrophic

propagation of a single crack.

We note that the results described briefly above have been used exten-

sively by Laws and Brockenbrough [13,14,15], and others, in the study of

microcracked polycrystalline ceramics.
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2.2 First Ply Failure of Composite Laminates B
‘,‘."I;'

The mechanics of crack initiation in an elastic fibrous ply were explained AN

‘D. i".l

in [16] and [17]. Cracks were assumed to initiate from a nucleus created by ﬂzﬂw
s
localized fiber debonding and matrix cracking. Conditions for the onset of i
AL

LS

unstable cracking from such nuclei were evaluated with- due regard to the ‘?g?ﬁ
DAY

l%ﬂ

interaction of cracks with adjacent plies of different elastic properties. It ﬂq&g
oyt

‘ad. 04

was found that crack propagation in the direction of the fiber axis controls

R

(R RS

the strength of thin plies, whereas cracking in the direction perpendicular to 3&%5
O

the fiber axis determines the strength of thick plies. The theory relates ply !ﬁéﬁ
JA‘!h !

thickness, crack geometry and ply toughness to ply strength. - @
L ‘

b

In order to apply the theory presented by Dvorak and Laws [16,17] to a kw iy

specific laminate, it is necessary to evaluate the reduction in the stress
intensity factor, at the crack tip of a transverse crack, due to the inter-
action with the adjacent plies in the laminate. This calculation is especially

difficult and involves the solution of a complicated singular integral

)
equation - the details are to be reported in a forthcoming Ph.D. thesis [18]. N
Oy
When use is made of these stress intensity reduction coefficients together : Nak
-\;u {
¥
with experimental data reported by Wang [19], one obtains the comparisons )
{ 4
shown in Fig. 4. @
$ ¥
::n
\"‘_\
S
2.3 Progressive Cracking of Cross Ply Laminates {&5}(
]
A further significant achievement has been the formulation of a simple Q ¢7
) r
shear-lag model to predict progressive transverse cracking of cross ply . ﬂ:
) ’
SO
laminates under monotonic loading. The model is based upon fracture mechanics e
L J
but accounts for the statistical nature of the transverse cracking process ~$:“E
by
&
observed in experimental tests. The theory has been developed in references k‘?&
L) . '
5 s.::nz.:
a
N
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[8] and [20]. 1In particular we suggested a definite choice of probability

density function to account for the statistical variations in the locations of V\?ﬂ
“.:Q ":
the respective cracks. Thus the model does not involve any adjustable param- Jﬂﬂﬁi
.,I (]

eters. The model allows us to predict the loss of stiffness, progressive

crack density, initiation of H-cracking at intetfaces,_etc. when we are given iﬁ?yi
basic data on ply thermo-elastic properties, ply toughness and laminate i:égi
oy

geometry. ?t
Figure 6 shows the predicted loss of stiffness for the bench-mark data of ; §~3
Highsmith and Reifsnider [6]. Also showa in Figure 6 are the Hashin [9] »“ ~§
lower bound and the Highsmith-Reifsnider [6] prediction. We observe that the : ‘-f
Dvorak-Laws self-consistent result is not shown in Fig. 6 since it is almost Ef‘i
indistinguishable from the Hashin [9] bound. In the final analysis one can ? ??
conclude that predicting the loss of stiffness is quite a forgiving process. 5.-§:
Indeed, when one considers graphite-epoxy systems, the loss of stiffness due ;iza;
to transverse cracking is so small that all models must give almost identical 35{5;.
results. However, when we consider the prediction of progressive crack ké&:ﬂ
density, a totally different picture emerges. %:-;g
As far as we are aware the only other work which addresses the problem of §§E£%
determining crack density under monotonic load is due to Wang, Crossman and ﬁﬁft
co-workers [19,21,22,23,24]. The predictions of the model developed by the ziig
present authors [8,20] are extremely close to the observed values, see Figs. 9 :§§€2
and 10. We note that we have omitted Wang's [24] numerical predictions from ?jgi
Fig. 9 since it is impossible to do justice by attempting to reproduce the :E::?
published graphs. Nevertheless, it is significant that both the Wang-Crossman §§£§
model and the Laws-Dvorak model give excellent predictions. x?iﬂ'
In our own experimental program conducted by Dvorak and Martine at RPI, F‘s‘ﬂ

| we examined glass-epoxy tube specimens of the 0,/90,/0p (n =1, 2; m =1, 2, 4) *aag
) 6 o
e

RN
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layup under incrementally applied, combined tension and torsion loads. The

crack dengity in the 90° plies and the stiffness losses in the laminated tubes
were measured in the experiments. In agreement with the predictions of our
analysis of the role of ply thickness in damage development, we found no pre-
failure damage in single-ply, i.e., 0/90/0 specimens. The single ply thickness
in our specimens was 0.254 mm. Some incomplete cracks were found in 0/903/0
tubes, and many circumferential cracks were observed in four-ply, 0/904/0

laminates. The implication is that the amount of damage in laminates can be

reduced if ply thickness is kept to a minimum.

The above experimental investigation also showed that transverse cracking
in the tested system was caused almost exclusively by transverse normal
stresses in the 90° layer. Combined loading in tension and shear showed that
the shear stress made no significant contribution to transverse cracking, but
that it was responsible for delamination between plies prior to final failure.

The experiments also confirmed predictions of stiffness losses by the
self-consistent method. The agreement was very good in the case of axial
elastic modutus of the tube, but less satisfactory in the case of the shear

modulus. Viscous effects were apparently responsible.

2.4 Fatigue of Metal Matrix Laminates

The experimental results of Dvorak and Johnson [26] on B/AL laminates, as
well as subsequent studies by Johnson on SiC/Ti plates suggest that cyclic
plastic straining of the matrix is the principal cause of fatigue damage
growth. No damage is typically observed if the laminate is loaded by an
elastic load cycle, either in the initial or shakedown state. This argument

can be extended to damaged laminates. In particular, one can assume that all

AT Ta T At
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;
" _

h.! damage growth will terminate if the laminate reaches an elastic deformation

state. As illustrated by the example in Fig. 8, elastic deformation can be

restored under an initially inelastic cycle of loading, if the amount of

2

L damage in the plies, and the applied strain cycle cause, respectively, expan-

=<0

sion and translation of the ply relaxation surfaces such that the prescribed

load cycle or the corresponding strain cycle can be accommodated within the

s

new elastic range. The damage evolution process can then be regarded as a

mechanism that the composite laminate employs to reach an elastic state. 1In

o ;(_2

this new state, the originally inelastic part of the total strain in each ply

o
EE is accommodated, in part, by the strain caused by opening of the cracks.
ﬁg Viewed from a different perspective, the damage process can be thought of
™ as a part of a shakedown mechanism in the composite laminate. According to
i the static or Melan shakedown theorem, an elastic-plastic solid or structure
. will shake down if any admissible residual stress field can be found such that
;: its superposition with the stresses caused by the applied loading will not
.! violate the yield condition anywhere in the solid. In other words, the lamin-
i ate will shake down if a subsequent yield surface, or its relaxation surface
é} counterpart in the strain space, can be found which contains the applied load

‘ or strain cycle. Of course, shakedown can take place only if the structure is
é§ loaded within its failure envelope, and if early collapse by incremental plas-
R tic straining can be prevented. That is usually the case in laminated plates
‘&; where the elastic fibers support a major part of the load so that the total

strains are small, yet substantially larger than the initial yileld strains of

a ply.

Modeling of the incremental shakedown-damage process in a metal matrix

laminate can be illustrated with the help of relaxation surfaces shown in

1 g
o

- A
e AR AT AT AR
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Fig. 8. In this example, the yield surfaces in strain space, so-called relax-

ation surfaces, were plotted for a (0/90)g laminate subjected to in-plane :E:::;

normal strains EZZ’ ::—33. The top bars indicate laminate strains, which are :::ggi

equal in all plies; the x3 direction coincides with the fiber orientation in '9:"
” the 0° ply, and x2 is the fiber direction in the 90° ply. Cracks have been :E%
0

added after completion of the load cycle, and the relaxation surfaces are

£

, therefore plotted from the end position at 50 MPa. The dashed line indicates 'é“
g the crack opening condition. As one would expect, a larger overall strain is 'E:‘::'::
E(; needed to cause the initial yield strain in the matrix of a cracked ply. :E':E::E‘
Therefore, the open crack branches of the relaxation surfaces expand with ":
& increasing crack density B. _ :
It is useful to point out that cyclic plastic loading of the laminate .
i creates cyclic plastic strains in individual plies which, as illustrated by “
@ Fig. 8, tend to reach a steady state after relatively few cycles. On the :“‘
X other hand, the plastic deformation cycle also promotes low cycle fatigue :::‘
'! damage growth which, in comparison, proceeds very slowly. Typically, several .K
thousand cycles may be needed to cause a significant change. One may then X ?
.\' expect the relaxation surfaces to translate much more rapidly than expand. %:‘:
::, The direction of translation should be such as to minimize the magnitude of 0 :
N plastic work per cycle. Under such circumstances, the relaxation surfaces -"‘"
.‘_":; will tend to translate into such most favorable positions which will assure ~;.$*
= that the amount of expansion - which is to say extent of ply damage - will '—:“
. Y
:E reach only the minimum amount necessary for an elastic accommodation of the E
- loading program. ::_&
t’f . :;*.

Another consequence of the large disparity between deformation and damage '.
"0'.:«

% rates is that in each damage state the effect of past deformation history will ;
X
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fade very quickly. That is to say that the deformation field in the laminate i".
at a particular state of ply damage will be very similar to that which one i— :‘E:
would reach 1if this amount of damage was introduced into an elastic laminate :‘:!:i‘
prior to the application of the corresponding load cycle. The implication is i ',‘
that the final deformation state in a damaged laminate subjected to a constant .‘":::':';‘:
load cycle must be independent of previous loading and damage history. There- :':',
fore, in arriving at a final damage state, one may follow any convenient path. ‘_‘
For example, the damage analysis of the typical case of constant amplitude E§E§E§
loading, which causes large excursions into the plastic range during many ::sgg
initial deformation cycles, can be replaced by analysis of damage caused by a :';
load cycle which expands at a rate comparable to that of damage growth. 1In '..’iﬁ’;
this particular case each increment in amplitude is followed after few cycles S:::::
by a saturation damage increment which restores elastic straining within a new ’
shakedown sate. :'"3::
Apart from the above arguments, available results obtained in tension- ?
tension fatigue tests of B/AL metal matrix composite laminates support the path .'::;!
independence concept. For example, Johnson found that a saturation damage :
state at a certain maximum load amplitude could be reached by dissimilar load- "‘,"
ing sequences. Another support for this concept was established by experiments o
which showed that the amount of damage in a laminate was determined primarily ::T d
by the load amplitude and not by variations of the mean stress. ::%‘h
We now present some results which illustrate certain aspects of damage 23":‘
development in B/AL laminates subjected to cyclic tension loading. Our objec- i:‘:é‘:‘:
tive is to find, for several different load amplitudes, the amount of damage .&::E:
in each ply that is needed to reach a shakedown state in the laminate. Of .".'
course, the stiffness loss and the internal stress distribution, particularly .EEE;
e
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the fiber stress, are also of interest. One specific laminate under consider-

ation, of 0/90 layup, was already discussed in connection with Fig. 8. 1In ad-

dition, a similar analysis was performed for a 0° plate. The final load cycle

B&=s

[

-
e

we wish to reach in both laminates is from Spjn = 50 MPa to Spayx = 500p5x MPa.

2

The actual path we follow starts with cycling of the laminate to a steady

state, as in Fig. 8. Then, while Spi, is kept constant, Sp;x 18 reduced to

b

o -
B R N

o

bring the laminate into an elastic state. Next, Spax is increased in small

increments. After each increment, cracks are introduced in the plastically

deforming plies to the extent needed to accommodate the deformation path

P N T R

within the expanded relaxation surfaces, This involves both expansion and
translation of the surfaces, which cause a new plastic strain state aand a
stress redistribution through the laminate. Details of the procedure have

been described by Wung [27] and Dvorak and Wung [28]. As an example, Fig. 9

%

': shows the current relaxation surfaces at two levels of Sp,y. Note that nigh

)

AN values of crack density £ are needed here to accomplish the accommodation. It
\

would be unrealistic to expect crack densities exceeding 8 = 1 in each ply.

~»

Therefore, B must be regarded here as a damage parameter which accounts for

extension of the cracks onto adjacent plies, for crack intersection at ply

|
Jn g
Sl

boundaries, and for crack extension by delamination along fiber-matrix inter-

-
-

faces. The incremental expansion of the loading range continues until one

o

reaches the desired final magnitude of Spgy-

> o ub e
%

Fig. 10 shows the change in the axial elastic modulus caused by satura-

tion damage in the two laminates as a function of the applied tension stress

s g e
P

range. The computed results are plotted together with experimental data of
Dvorak and Johnson [26]. In the experiments, the saturation damage state was

defined as the damage scate after 2x106 cycles at constant stress amplitude,
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as noted in Fig. 10, but actual measurements of stiffness loss indicated that
damage usually stabilized after 5x103 cycles. Finally, Fig. 11 indicates the
computed magnitudes of the axial stress in the 0° layer fibers, in the satura-
tion state at different levels of Spzx. This stress change has been plotted
up Spax equal to the experimentally observed endurance limit. Note that while
the endurance Spyy are quite different in the two lamiﬁates, the terminal
fiber stresses are nearly identical. The implication is that fatigue failure
occurs in these composite systems by overloading of the 0° fibers. Of course,
the maximum stress is not seen by the fibers until the laminate reaches the

saturation damage state at the endurance Spgy. In the initial stages of

damage development, a part of the load is carried by the undamaged off-axis

plies, but as damage grows more stress is absorbed by the 0° fibers.

12
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3. WORK IN PROGRESS

Two Ph.D. dissertations are still in progress, one by Mr. A. Kaveh
Ahangar [29] at RPI, and one by Mr. J.B. Wang [18) at the University of
Pittsburgh. This work in progress can be described as follows.

Mr. Ahangar's dissertation is concerned with evaluation of overall stiff-
ness changes, and the local fields in plies, for cracked laminates of any lay-
up. The approach is based on variational principles of elasticity, which
allow one to select, among a class of chosen admissible fields in the plies,
the best approximation of the actual stress field in a cracked ply. The
chosen fields do not take into account crack-tip singularities, this seems to
be reasonable in fibrous systems where the crack tip geometry is not well de-
fined. However, interaction between cracks in a ply, and of the cracks with
adjacent plies is taken into consideration. This technique leads to much
better estimates of ply fields than the self-consistent method which gives
only ply stress averages. We have already completed the analysis of laminates
with specified crack densities. Current work addresses the problem of crack
growth under incrementally applied load. Results of this kind have been
avallable so far only for 0/90 laminates. The method relies on a numerical

procedure, but the computing effort is relatively moderate.
Work is also continuing on the exact stress analysis of cracked laminates.

To a certain extent this will be reported in the forthcoming Ph.D, thesis by

Wang [18]. But we continue to strive for a computer code which is sufficiently

ugser-friendly and cost effective to analyse laminates of arbitrary lay-up.
This is not easy and indeed is impossible without use of the supercomputer.

As remarked earlier in this report, this program provides the stress intensity

factors which are essential in the Dvorak-Laws model for first ply failure.
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The work on progressive cracking is continuing and problems associated
with other lay-ups, e.g., (£25,90)g, ( (0,90),)g, are being addressed. 1In
addition we are continuing with our work on the onset of additional damage
modes together with the progressive nature of such modes. A particular érob-
lem of concern here relates to the development of damage during bending.

But the major part of the work in progress is now related to ceramic
matrix composites and laminates. Here we are investigating the change of
thermomechanical properties of both unidirectional composites and laminates.
Typical problems of interest are the loss of stiffness and improvement of
toughness of various ceramic matrix ceramic fiber systems. It is clear from
the literature and from discussions with Dr. Nicholas Pagano and with Dr. Ted
Nicholas at the Air Force Materials Laboratory that unidirectional materials
pose significantly different issues to those which must be addressed for
laminates. Further, it is also clear that the damage modes in ceramic matrix
ceramic fiber systems (unidirectional or laminates) are different from the
modes observed in graphite-epoxy or glass—epoxy systems. These problems are

under intensive study.
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S. LIST OF PRESENTATIONS ON AFOSR-SPONSORED WORK

G.J. Dvorak (September 1, 1985 - September 1988) N

Eleventh Annual Mechanics of Composites Review, Dayton, Ohio,
October 22~24, 1985 (invited lecture).

Midwestern Mechanics Seminar:

University of Notre Dame, October 29, 1985.

I1iinois Institute of Technology, October 30, 1985.
University of Illinois at Urbana-Champaign, October 31, 1985.
Purdue University, November 1, 1985.

dgﬁs
Midwestern Mechanics Seminar:

University of Michigan, April 9, 1986.
University of Wisconsin, April 10, 1986.
University of Minnesota, April 11, 1986.
Michigan State, April 29, 1986.

Colloquium, Northwestern University, May 2, 1986. "Analysis of
Fatigue Cracking of Fibrous Metal Matrix Laminates."

General Electric Company, Seminar, May 14, 1986.

ASME Winter Annual Meeting, invited lecturer, Anaheim, CA, December
7-12, 1985,

ONR Workshop on Composite Materials - Interface Science, Leesburg,
Virginia, March 11, 1987.

Solid Mechanics Seminar, Brown University, April 5, 1987.

Lawrence Livermore Laboratories, Livermore, California, Mechanics Seminar,
April 23, 1987.

Alcoa Laboratories Centennial Technical Seminar on Mechanics: Micro-
mechanics to Product Design, Hilton Head, South Carolina, June 7, 1987.

Society of Engineering Science 24th Annual Meeting, Salt Lake City, Utah,
3 papers, September 20-23, 1987.

Air Force Mechanics of Composites Review, Ft. Lauderdale, Florida, October
16, 1987.

ASME Winter Annual Meeting, Boston, Massachusetts, 2 lectures, December
| 14-~15, 1987,

Evandale Aircraft Plant Site Visit, Evansdale, Ohio, February 18, 1988.
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Dvorak (CONTINUED)

Short Course on Metal Matrix Composites, Los Angeles, California,
February 22-26, 1988.

Rensselaer Composites Center Overview '88, "Plasticity and Fracture of
Composite Materials," March 2, 1988.

France-U.S. Research Workshop, Strain-Localization. and Size Effect Due to
Cracking and Damage, '"Fatigue Damage Mechanics of Metal Matrix Composite

Laminates," Cachan, France, September 1988.

N. Laws (Sept. 1, 1984 ~ Sept. 30, 1987)

CCM Decennial Meeting, University of Delaware, September 24-28, 1984.
Society of Engineering Science, VPI, Blacksburg, VA, October 15-17, 1984.
University of Illinois at Urbana-Champaign, April 25, 1985.

Society of Engineering Science, Pennsylvania State University,
October 7-9, 1985.

Rensselaer Polytechnic Institute, February 20, 1986.

Texas A & M, March 13, 1986.

University of Houston, March 14, 1986.

University College, Cork, June 16, 1986.

University College, Dublin (Engineering Dept.), June 18, 1986.
University College, Dublin (Engineering Dept.), June 19, 1986.
University College, Dublin (Mathematical Physics), June 20, 1986
Yale University, October 29, 1986.

Virginia Polytechnic & State University, December 3, 1986.

Lehigh University, February 6, 1987.

Pennsylvania State University, April 8, 1987.

Composite Materials Workshop, Glasgow, Scotland, July 29-31, 1987.
Sawcuk Memorial IUTAM Symposium, Grenoble, France, August 24-28, 1987.

Society of Engineering Science, Univeristy of Utah,
Septecaber 20~23, 1987.
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Figure 1: Comparison of self-consistent model with experimental data [6]) 3%2;
for (0,903)g E-glass epoxy laminates. ;yﬁyf
Figure 2: Longitudinal Young's modulus of various T300/5208 systems: 7§q&
(a) bound (b) self-consistent method ——=--- q; ¢

(c) differential scheme . + « .« . ;‘hﬁ
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Figure 3: Longitudinal shear modulus of various T300/5208 systems: ‘q?&

(a) bound (b) self-consistent method —--- ®
(c) differential scheme « « + + « TR
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Figure 4: Predictions and measurements of strength of various T300/934 #&Q&
graphite epoxy laminates. 49*?
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Figure 5: Experimental and theoretical values for stiffness loss of (0,903)g ®
E-glass epoxy laminate: éﬁ?ﬁ
(1) Highsmith-Reifsnider predictionSeesesscscscssss g :.o::‘
(ii) Shear lag (iii) Lower bound —-——~—- ‘q{ié
Experimental data from reference [6]. .ﬁéi}
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Figure 6: Theory versus experiment for progressive cracking of AS-3501-06 @
laminates. Data from Wang [24]. A,
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Figure 7: Theory versus experiment for progressive cracking of T300/934 xﬁ ﬁ
laminates. Data from Wang [24]. "é.?
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Figure 8: Motion of ply relaxation surfaces during first and second loading
cycle, and expansion of the surfaces at different values of the ﬁ‘ﬁﬁ
damage parameter 8. ‘aaég
9
Figure 9: Trans lated and expanded relaxation surfaces of a damaged laminate o 0N
at two different levels of Spzxe Bt ¢

Figure 10: The effect of sustained cyclic loading on reduction of axial " \q
elastic modulus of two B~AL laminates. Comparison of prediction ‘ e
with experimental results obtained under constant load amplitudes. ':.*:
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Figure 11: Fiber stresses in zero~degree plies after damage-induced shakedown. Lt
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I. Thermoelastic Properties of a Ply
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ABSTRACT

Overall stiffnesses and compliances, thermal expansion coefficients, and stress and
styain averages are evaluated for a fibrous composite lamina which contains a given
density of open transverse cracks and is subjected to uniform mechanical loads and
thermal changes. The evaluation procedure is based on the self-consistent method and
is similar, in principle, to that used in finding elastic constants of unidirectional com-
posites.

1. INTRODUCTION

N MANY FIBROUS COMPOSITE SYSTEMS THE FAILURE STRAIN OF THE FIBER

far exceeds that of the matrix. Under load, the difference is usually accom-
modated by matrix cracking. This is frequently observed in monotonically or
cyclically loaded laminated plates, where each layer may contain a system of
aligned slit cracks which grow in the direction of the fibers and across the
thickness of the ply. Such cracks are often called ply cracks or transverse
cracks, although it is more appropriate to reserve the latter for cracks which

Reprinted from Journal of COMPOSITE MATERIALS, Vol. 19—May 1985
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o

are perpendicular to the fiber axis, and refer to cracks which grow parallel to
the fiber direction as axial cracks.

In polymer matrix composites axial matrix cracking typically siarts at low
strain levels in the weakest off-axis ply [i-3]. As loading continues, cracks ap- 3
pear in other off-axis plies; also, their density increases until it reaches a cer-
tain saturation level. For example, in statically loaded (0/90), graphite-epoxy
laminates the minimum crack spacing was observed o0 be equal to 3.5-4.0 ply
thicknesses [4]. In metal matrix composites, matrix cracking appears to be ’
caused only by cyclic loads which exceed the shakedown limit of the laminate A
[5]. Under such circumstances the matrix experiences cyclic plastic straining L
and, consequently, low-cycle fatigue failure. Both axial and transverse crack-
ing is present, the former in off-axis plies, the latter in zero degree plies. The _
crack patterns and densities are generally similar to those found in polymer :‘
matrix systems. However, saturation density increases with load amplitude, {" )
and it is not unusual to find cracks as close as one ply thickness. Y

In a typical part of a laminated composite structures, removed from con-
centrated loads and free edges, matrix cracking is the initial, low-stress
damage mode under applied load. it is eventually followed by other types of
damage, such as cracking between layers and fiber breaks; but these appear at _
relatively high loads which may exceed allowable design magnitudes. In con-
trast, matrix cracks grow at low loads, and they can significantly impair stiff-
ness and strength of composite structures, especially those containing many

AT

W

off-axis plies. For example, fatigue tests on both polymer and metal matrix ®
laminated plates indicate that stiffness and residual static strength reductions by
caused by cracking in plies may be as high as 10-50% after 2 x 10 cycles of )
loading [$,6]. It is therefore desirable to consider the effect of matrix cracking
on composite properties in design.

Sufficiently general theoretical models of progressive cracking in com-
posite laminates are apparently not to be found in the literature. Such results

as are available for angle-ply laminates have been obtained from finite ele- L]

ment calculations [4,7], while other studies have focused on (0/90,), :‘.’%-;.'\:u'

laminates [2,3). : L
The purpose of this group of papers is to introduce a modelling procedure jj

for axial cracking which can be applied to any laminate geometry under %

general loading conditions. \

The first step in the analysis, undertaken in this paper, is an evaluation of
overall thermoelastic properties of a fibrous composite which contains a cer-
tain density of aligned slit cracks, Figure 1a. In subsequent papers we intro- .
duce appropriate fracture criteria for a unidirectional ply, and develop a oo
technique for evaluation of instantaneous crack densities and stiffnesses of a F /
single ply which is strained in a prescribed way. Finally, these results will be
incorporated into an analysis of laminated plates which are loaded by in- Q-
plane stresses and contain many cracking layers of different orientation.
Although the subsequent parts utilize the results obtained herein, the pro-
cedures developed there do not depend on the particular method used 10
evaluate the effect of cracks on thermoelastic properties of a lamina.
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Figure 1. (A) an infinite fibrous medium with afigned slit cracks, (B) a fiber lamina with paralfel slit N “':',:‘
cracks. Lt
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In this paper we are concerned with evaluation of overall compliance, o :i.ﬁ*
thermal expansion coefficients (or thermal strain and stress vectors), and ) o‘:\‘g:
strain and stress averages in the phases of a fibrous lamina which contains ;" ‘e;: ‘
aligned siit cracks, and is subjected to uniform mechanical loads and thermal 'e’:f,!"{
changes. The approach to the problem was outlined in our recent study (8], tiaLit
where we suggested that the effect of matrix crack systems on properties of
fibrous composites could be analyzed, in principle, by the techniques which ] '\‘:c‘:
are commonly used to evaluate the elastic constants of composite materials AnAid
and fibrous laminates, e.g., by the self-consistent method. 2 b
The essential approximation in the evaluation of stiffness and compliance b .0: 0
changes of laminates consists in the replacement of a cracked layer, Figure .:l:. :.:
1b, by an effective medium which contains many cracks, Figure 1a. The crack R A
densities can be exactly matched to provide identical stiffnesses. However, the .
cracks in the layer are not entirely surrounded by the layer material, instead ‘.':':::"
they interact with neighboring layers which have different elastic properties. P
This interaction is limited to the vicinity of the crack tip {9}], thus it may be lzo"‘c,l’;

o
%

important in analysis of local crack growth at the interface, but it has only a
mincr effect on lamina stiffness. We note that a similar approximation is
commonly accepted in evaluation of elastic moduli analysis of laminated
composite structures reinforced by monolayers of large diameter fibers.

.,‘..
:'e:"t;ﬁi'?

2. CRACK DENSITY i
It was emphasized in our earlier work [8] that interest in cracked infinite \ 'o“':
unidirectional composites is largely determined by the desire to study com-

posite laminates. Certainly in papers of this series we assume that the proper- w
ties of a cracked ply are adequately predicted by the infinite model. It is, .u:;'a.
therefore, expedient 1o interpret the analysis in this paper with particular :' ":::'.c
(Nl
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reference to cracked laminates. Thus the terms cracked ply and cracked in-
finite unidirectional composite are here synonymous.

Consider a unidirectional fibrous medium with aligned slit cracks of length
2a, Figure la. By way of contrast, there are severai ways of vicwing the com-
posite on the microscale. In the first place one could distinguish between the
three coexistent phases: fiber, matrix, and cracks. On the other hand, one
might consider the uncracked fibrous composite as an effective homogeneous
solid into which cracks have been introduced. In [8] we referred to the two
possibilities as the three phase model and two phase model, respectively. The
distinction reflects the fact that in certain laminated composite systems the
crack length and fiber diameter are of similar magnitude, while in other
systems the fiber diameter is much smaller than the crack length. A signifi-
cant conclusion which may be drawn from [8] is that for many. purposes the
predictions of the two models are indistinguishable. In the present paper we
concentrate on the simpler two phase model.

In analysis of cracked materials, it is well known that cracks can be
modeled either as limiting ellipsoids or as slits—the final results are
equivalent. It was convenient in our earlier work [8] to regard cracks as
limiting ellipsoids and we adopt the same approach here. On the other hand
we note that in a study of crack geometries different from ours, Gottesman,
Hashin and Brull [10) use slits a priori. Thus we can consider the cracks in
Figure 1 to be elliptic cylindrical cavities. Let a, b respectively denote the
major and minor semi-axes of a cavity, and let n be the number of cavities per
unit area of the x,x;-plane. Then the volume fraction of cavities is 1/4 nfid
where d = b/a is the aspect ratio and § = 4na’ is the crack density parameter.
For simplicity, suppose that the cracks have length 2a, then § is the average
number of cracks in a square of side 2a. Alternatively, when the cracks are
located in a ply, Figure 1b, f measures the average distance between cracks.
Clearly, if the cracks are equally spaced in a ply, the distance between suc-
cessive cracks is 2a/f3. Thus when 8 = 1 the distance between cracks is equal
to 2a. As f3 decreases the distance between cracks increases and when =0
there are no cracks. We note that in some experiments [4] the observed
minimum separation of cracks (in a saturation state) in Gr-Ep laminates was
3.5 to 4.0 ply thicknesses. The corresponding values of 8 are 0.28 and 0.25
respectively. These values may be contrasted with B-Af composites where
values as high as f# = 1 have been observed [5]. Therefore we present all
results for0 < f € 1.

As cracks are generally initiated at preexisting flaws which are randomly
distributed in the ply, the crack distribution at any given moment is not
regular. However, we assume that it is statistically homogeneous, and that f3
is a measure of average crack density in the in-plane area of the ply. Also,
since cracks sometimes tend to propagate rapidly across the entire loaded
width of a ply, the crack density does not change continuously but may in-
crease in discrete steps. These steps can be measured in terms of a change A
caused by a single crack in a unit plane area of a ply.

To illustrate the relationship between the crack density 8, and the number
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Table 1. Cracks in a 1/8 mm thick ply (28 = 0.0125 cm).

Crack density p 0.1 0.25 0.5 0.75 1.0
Crack spacing, 2a/3 mm 1.25 0.50 0.25 0.17 0.125
Numnber of cracks/ Unit square plane
area of ply
No. cracks/cm’ 8 20 40 60 80
No. cracks/in? 20 50 100 150 203
No. cracks/ ft? 244 610 120 1830 2438

of cracks in a plane area, we focus for a moment at the x,x;-plane in Figure
1b. The trace of each crack in this plane is a straight line parallel to x,. Table |
presents some typical numbers calculated for a 1/8 mm thick ply. It shows the
distance between cracks 2a/f, and the number of cracks in a unit area (x,X,-
plane in Figure 1b) of the ply, at specified magnitudes of . Note that even at
low f values, and in smalil areas, the crack counts are relatively large.

These results also indicate the magnitude of an increment A caused by a
single crack in a unit area of the ply, which does not depend on 8. For exam-
ple, even in a small area of 1 cm? a single crack changes f# by 0.0125. This in-
crement is relatively small, so that 8 may be regarded as continuous in most
applications. A notable exception occurs at stress concentrations where
stresses may change significantly within a small area, e.g., | mm?. A single
crack will cause AB = 0.125/crack in a 1 mm? area, hence 8 may not be
regarded as continuously changing. Moreover, the crack count becomes small
(~1 crack/mm at 8 = 0.1), so that the concept of average crack density may
no longer be applied. It follows that the averaging approach is admissible in
evaluation of stiffness changes caused by cracks in large in-plane areas of a
ply or laminate, but that it may not be suitable for analysis of local properties
at small geometrical imperfections such as notches or free edges.

1t is also appropriate to discuss the definition of crack density in exterior or
surface plies of a laminate. As in Figure 1b, such cracks are open at the sur-
face, hence their effective length is not equal to the ply thickness. However,
the surface layer may be regarded as half of a layer of thickness 4a, Figure 2,
so that open surface cracks may be approximated by interior cracks of length
4a. The effective crack density, 3, in exterior layers is easily obtained in terms
of the crack density, f8, defined for interior layers. In fact, from Figure 2

2a/ = 4a/f,

hence
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3. EVALUATION OF OVERALL COMPLIANCE ‘
- . . . Y » X
On the macroscale, the cracked unidirectional composite of Figure 1 can be Q:::::\’t::
regarded as an orthotropic homogeneous solid. The elastic properties of the ::",'.:,:.t
“‘matrix’’ are identical with those of the fibrous composite and can be easily ...'::,v ‘;
evaluated. When cracks are introduced, the macroscopic or overall elastic :.0::.&
moduli of the solid change. To make the concept of overall moduli mean- X )
ingful, it is necessary to consider overall uniform loading. Thus, we introduce ®
uniform overall average stresses g and strains g, with components arranged in FERE
(6 % 1) column vectors and related by constitutive equations* E:.{' :.'.'
" 5 l 8%
- = = ()
3=L§ E=Mg3, (1) ¥ .;::Z'
. . . el
where L, and M are the overall stiffness, and compliance (6 * 6) matrices of SO
the cracked composite, respectively. M = L-* when the inverse exists. ®
Since we are here concerned only with a 2-phase model (in which the un- ';::\;
cracked composite is the matrix) it is convenient to adopt a minor variant of % 5' :sj
the notation of our earlier work [8); we use the suffix o to denote the proper- X o:i.';'a
ties of the uncracked composite. For example, L, is the stiffness of the un- :a_:t:q:ﬁ(
cracked composite. .'a:@:‘y
According to the derivation given in [8], the self-consistent estimates for P
the overal! stiffness and compliance matrices are given by v\’ o
¢ hU i
~ N, (
L=L,-fL AL "‘&
- @ e
- + - L}
M=2M,+ A, f:- Ay
.. ﬂ 4
where e
A AN
I s
*As 0 [8), (6 x 6) matnices are denoted by vapital Laun or Greek letters, eg., Lo VAL 4L Boand (6 < Thmatnces 'I.|'a::
by lower case letiers underhned by a ulda. ¢ g. ¢ mr. L 'ﬁl:::“
! “
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ﬁ =-nf. 3)

Al

The matrix A has only three nonzero components, which are expressed in
terms of compliances M, of the effective medium as:

= MnMgi_' m.\

M, (ai’* + a}’?) 4)

Az

Au = (Mo Ms)''? )

- 2 — 5/2 ‘
I\“ = (MnMJJ M:I.J) M:?’”Mu M?:) (a:/z'.‘. a;/l) (6)

where a, and a; are the roots of

M :My; = M}s)a? - {M.‘DJM“ + Z(MIZMJJ - MlMu)}a + MMy, — M, =0.
: )]

These results imply that only three compliance coefficients M,,, M., and M,
are affected by the introduction of cracks, the remaining six terms in M are
unchanged, i.e., they remain equal to those of the uncracked fiber composite.
In particular

My=M\, M,=M), M,;=M,,

My=Ms, M,=M,, My=M;,

My = M3 + f(MuMyy = M jal + ai’?)/M;, ®
Mo = M + fIMuM,)'? )]
Meo = M‘a’o + B(MnMn - M?J)“‘Z(MIIMJJ - Mfs/“z(ax“z + Oglzl/Mno' (10)

and from (7):

oo = (My,M,; = MJ)/(MZMJS - M)
a, + ay = (MM + 2(M My, — MMy )/ (MaMss = M.

The unknown shear compliance M., can be obtained directly from (9):
M“=m.+glﬁ M + (B* M3y + 4M2U Mss)'?) (1

The remaining unknowns M,;, and M,, are found from (8) and (10). The solu-

XX
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tion of these equations is perhaps best explained with the help of additional :::s:'f,;:
notation. Thus let h ¥t
X = MM, = My, , X, = MMy — M, (12) ’ o'.-
¥ = MM, » Yo = MiM;, 13 ,:’ ‘:?:E
p=MMy;—-M,, q=2M;My — M;M,) (14) :E:E

Now, it is easy to show that

y=y.+(p/x}"x — x.)

and that x is the solution of
Fixt=x~x, — Bljpuz X+ (y, +q)x ~pVix, x Vi =, (15)

At this stage it is not clear that the self-consistent estimate for x is unique.
This apparent deficiency is easily remedied by noting that the square
bracketed terms in (15) is always positive. Thus x 2 x,. Next one could for
example rewrite (15) as a quartic in x*/? and use the Descartes’ rule of signs t0
show that Equation (15) has one and only one root x 2 x,.

Results obtained for several composite systems indicate that an approx-
imate value of the positive rout x = x, ¢an be found as:

= Fi(x.)
1=% F'(x,)

(16)

This is illustrated in Figure 3, where F¢x) plotted against x is almost a straight
line between x, and x,.

Once x, has been found, M,, and M, are obtained from (12) and (13),
respectively.

The preceding argument may suggest that it is better to solve equation (2,)
for the compliance matrix then equation (2,) for the stiffness matrix. This is
not the case. The analysis was presented in terms of the compliance to furnish

a simple proof of the uniqueness of the self-consistent solution. From a com- il;la.'li'
putational standpoint, it is just as easy to solve (2,) for the stiffness as it is to &' oy
solve (2;) for compliance. Once either is known the other is found by et
inversion. St
If the M, are known, then one can find the three nonzero components of

A in (6) from (4). The overall stiffness L can then be written in terms of Ay; ‘
the expressions appear in (A-6) in Appendix. -
We emphasize that the results obtained above are valid only for the case of " e."@
open cracks (c.f., (32) below). If cracks are closed, the overall response may o ) )
be approximated by that of the uncracked composite. *_"""»' i:‘
:,-\’ ; 4
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Figurs 3. Solution of Equation (15). 8

4. RESPONSE TO THERMAL CHANGE K

Let 8 denote a uniform temperature change from a reference temperature ,.“ T
8., applied to the composite. The constitutive Equations (1) must be replaced W

by W :I"lfl‘s

=Li-61 E=M

Qi
(LT}
™|
Q!

+ 9’_7,! R an A, :'.‘

where m is the thermal expansion vector and £ the thermal stress vector [11]. X h :..
From (17) one obtains Q

1(
e
{=Lm. (18) F‘*r

It is probably obvious that the presence of cracks does not affect free ther- Y
mal expansion of the composite. Thus ; 1)

m=m,, (19

and from (2) and (!8): N
> n )

L= (1~ BLAJL, (20) R

Explicit forms of m and { are: ' I::" e
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-a:l 7Lu + Ljar+ Ly ‘;:
ar (L, + Lyjar+ Ly, a,
- ' (Lis+ Lyjar+ Ly ay, Q1
m= ,' = »
- 0 - 0
0
L0 - 0 _

where ar and a, are linear thermal expansion coefficients of the uncracked
composite in the transverse and axial directions, respectively. Since the coeffi-
cients of L; change with §8, { is also a function of 3, while s1 remains con-
stant.

Again, the derived expressions are valid only if the cracks are open. Closed
cracks do not affect thermal response of the composite.

5. LOCAL STRAIN AND STRESS AVERAGES

Certain applications of the above results require information about local
stress and strain fields in the phases. Estimates of local fields are also needed
to distinguish between loading conditions which lead to either open or closed
cracks and thus delineate limits of validity of the theory.

It is clear that when a fiber reinforced composite containing cavities is sub-
jected to general uniform mechanical loading, part of the applied strain (i.e.,
the average strain) is accommodated by cavity expansion. Whereas the strain
of a typical cavity wall becomes unbounded in the limit of vanjshing aspect
ratio, the imporiant quantity in the macroscopic study of composites is the
wall strain multiplied by the area of the cross-section (or aspect ratio) which
tends to a finite limit. Following Laws [12], let ¢* be the strain of a typical
cavity wall, and set

$=1limdg . (22)
T 48=0
Then it is easy to show that (c.f., [12])
$=Arz. (23)

Furthermore, from the formulae given in [8], and in Section 4 above, it is
not difficult to show that in the limit of slit cracks (d — 0), the overall strain,

€ is given by

=L+E. (24)

imy

where g, is the average strain in the composite ‘‘matrix’’:
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&E=(-BALE+BALmSB. (25)

In addition, & is the crack accommodation strain
E=BALIE-m8B); (26)

it represents that part of the applied (average) strain which is accommodated

by cracks.
In practice Equations (25) and (26) provide us with estimates of the local

stress and strain fields within the composite.
Viewed from another standpoint, Equations (25) and (26) immediately
furnish the strain concentration factors. As far as the composite ‘‘matrix”’ is

concerned,

E=Af-6g @

~

where
A=1~fAL
. (28)
a={(A-)m=-FALm

It is perhaps important to emphasize the different physical interpretations
of & and £. Whereas &, is the average strain in the matrix, & represents that
part of the overall strain which is accommodated by all the cracks. Therefore,

one can write (26) as

E=AE-ba, (29)
where
A =fAL
i (30)
a=BALm.

For example, it is immediately obvious that the average thermal strains in a
fully constrained cracked composite (€ = 0) are

=~EL=BALm9.

(!m

The matrix expands at the expense of crack closing.
For computational purposes it is advantageous to review (28,) with the help

of (2) in the form

A=M,L. 3D
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It is often convenient to have explicit forms of the above results. The
nonzero components of A in (28) are:

A=Ay =Au=1
Ay =MLy -M,,) L,

An=(ML-My) L, + 1
(32)

A= (M5 - M) Ly
Ay = MA/M-I-\

Ao = M/ M .

Again, MY are compliances of the uncracked composite; M,;, L, are listed in
(A-3) to (A-6) in the Appendix.

The components of thermal strain concentration factor g in (28) are all
zero, except for

ap == ﬁl\u[(Lu + La)ar+ La ad] 33

The average strain & (26), (29) in the cracks has the following nonvanishing
components:

i, = BAn[Ln(zu ~ar0) + LT, — a:8) + L1s(Es — a.0)] 3
(34)

5 = (1 — MU/ Mu)e, &y = (1 ~ M/MesJEa ,
We note that the distinction between open and closed cracks is determined
by the inequality

&: >0, (35)

which can be evaluated with the help of (34).

The results presented here are valid only if this inequality is satisfied. If the
sign is reversed, or if the two sides are equal, then cracks are closed and do
not affect the mechanical and thermal response of the composite. An excep-
tion arises when the closed crack faces slide in shear. Treatment of this case is
beyond the scope of the present paper [13].

Finally, we note that evaluation of stress averages in the phases is trivial.
Since op‘en cracks do not support any stress,

% =0 (36)
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6. STIFFNESS AT LARGE g

When a fibrous lamina is embedded in a laminated structure, it may crack
rather extensively. Under such circumstances, certain components of L,, in (2)
become independent of 8, or equal to zero. It is worth evaluating these
limiting stiffnesses since they correspond to the worst possible damage to a
particular ply of a laminate. A good approximation to the actual residual
stiffness can be obtained as

L,=limL,. 37
p o

Now as f§ = = it is easy to see that
My, Moy My =~ >
whereas the remaining components of the compliance matrix remain finite
(and equal to the uncracked value). It then follows from simple matrix inver-
sion that
L, =My/y =L, - (L))*/LS,

L,=0 Li:=0 Li; =0

(3%)
Liy=-=M/y =L} — LHLS%G/LY
Ly =M\/y=LS - (L) /LS
where y = M}, M3, — (MY)% Also,
Lss =L, Liu=Li,=0. (39)

For a moderately cracked ply, say f# = 1, a reasonable approximation to
the stiffnesses L, (i) = 1,2,3) is still given by (38), while L, is of course equal
to L9s. However, L., and L. must be calculated either directly from (2) and
(A-6), or indirectly from'(8), (10), and (11).

7. SELECTED RESULTS

To illustrate the evaluation of compliances of a cracked composite, and of
the “‘matrix’’ strain averages, we consider a T300 Gr-EP system. Table 2 lists
the constituent properties of fiber and matrix, and of the uncracked com-
posite. The composite compliances were obtained from self-consistent
estimates of moduli [14].

Figure 4 shows changes in the three compliances M,;, M., and M.,
calculated from Equations (8-11) for given values of crack density . Of
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Table 2. Constituent properties and compliances of the T300 Gr-EP system.

Unit 3% G, Vo E.. G.; Symmetry
Fiber 10%si 3.00 3.3 225 0.78 Transversely
{T300) Isotropic
0.410
10°MPa 2275 3.2 15.5 5.4
Matrix 10%si 0.50 0.19 0.50 0.19 Isotropic
{Epoxy)
0.350
10°MPa 346 1.26 34 1.26
Composite Compliances:
Compliance ce =02 cy =04 ¢ =06
i 0.2069 0.1596 0.1192
h -0.1037 -0.0779 —0.0661
¥s -0.0075 -0.0041 -0.0028
M3, 0.2069 0.1586 0.1192
M3 -0.0075 —0.0041 —0.0028
M3, 0.0207 0.0107 0.0073
M2, 0.5108 0.2726 0.1244
I 0.5108 0.2726 0.1244
M2 0.6211 0.4746 0.3506

All values are in units of (10° MPa) ',
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Figure 4. Compliance changes in the T300 Gr-Ep system caused by cracks of density 3. oo
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Figure 5. Changes in strain concentration factor components in composite “matrix”’ caused by
cracks of density 8 (7300 Gr-Ep).

course, all these components increase with increasing f, but their change is
quite gradual, especially at low 8. This contrasts but is not in conflict with the
relatively rapid reduction in stiffnesses which we found in [3].

We note that the composite without cracks is transversely isotropic, and
has five independent compliances, M,,. When cracks are introduced the coef-
ficient M,,, M.., and M,, change, the material is no longer transversely
isotropic, and the number of independent elastic compliances increases to
eight.

The changes caused by 3 in components of strain concentration factor 4 in
(28) are shown in Figure 5. As required by (32), five of the eight components
of A change with f3. Note that the fiber volume fraction appears to have a
small effect on A,,. However, crack density f# can have a significant effect on
the strain concentration-factor components, especially at relatively low values
of f.
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SYMBOLS
2a = thickness of a lamina
A a = mechanical and thermal strain concentration factors for
unbroken segments of a cracked lamina
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et
I = 6 x 6 identity matrix nasat
L = instantaneous overall stiffness of a lamina astel
L = gverall lamina stiffness at large crack density .
J = instantaneous overall thermal siress vector of a lamina o
1, = thermal stress vector of the unbroken segments of a cracked oo '."lf
lamina }‘ :_’
M = instantaneous overall compliance of a lamina r:;:é’
m = overall thermal strain vector of a lamina iy
m, = thermal strain vector of the unbroken segments of a cracked d oA ..ﬂs
lamina _—
a, = axial linear thermal expansion co~fficient of the uncracked X, 2
composite lamina . ';,e'; .
ar = transverse linear thermal expansion coefficient of the ;4-;:‘. Sc(
uncracked composite lamina Y b
B = crack density parameter in an interior ply -z) - '._j
fc=2p = crack density parameter in a surface ply B
B = '/41'![3 ."‘
£ = overall uniform strain hlig"!".'i
& = volume average of strain accommodated by cracks (crack 't::'.:.t
accommodation strain) :l.p::,c:
& = volume average of strain in the unbroken segments of a l.:zi.::l' |
cracked lamina B
6 = uniform temperature change - 3
A = crack tensor NN AT
g = overall uniform stress N
% = volume average of stress in unbroken segments of cracked .':.‘:" %
lamina ' 'Q:i:-
n‘{\:
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ABSTRACT

The mechanics of transverse cracking in an elastic fibrous composite ply is explored for
the case of low crack density. Cracks are assumed to initiate from a nucleus created by
localized fiber debonding and matrix cracking. Conditions for onset of unstable cracking
from such nuclei are evaluated with regard to interaction of cracks with adjacent plies of
different elastic properties. It is found that cracks may propagate in two directions on
planes which are parallel to the fiber axis and perpendicular to the midplane of the ply.
In general, crack propagation in the direction of the fiber axis controls the strength of thin
plies, while cracking in the direction perpendicular to the fiber axis determines the
strength of thick plies. The theory relates ply thickness, crack geometry, and ply tough-
ness to ply strength. It predicts a significant increase in strength with decreasing ply thick-
ness in coustrained thin plies. The strength of thick plies is found to be constant, but it
may be reduced by preexisting damage. Strength of plies of intermediate thickness, and
of unconstrained thick plies is evaluated as well. Results are illustrated by comparison with
experimental data.

1. INTRODUCTION

N THE FIRST PAPER OF THIS SERIES (1} WE DESCRIBED THE EVALUATION OF
thermoelastic properties of a unidirectional composite containing a certain
density of aligned slit cracks which grow in the direction of the fiber and across
the thickness of the ply. These cracks are usually referred to as ply cracks or
transverse cracks. Now we focus our attention on a single ply in a typical part
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of a laminated structure, removed from free edges and other stress concentra-
tions, and examine the mechanics of transverse cracking in the ply. In particular,
we consider the initial stage of the cracking process which consists of first ply
failure, and perhaps subsequent failures of the ply at locations which are far apart
from each other, so that the cracks do not interact. Our goal is to identify the
failure modes which cause transverse cracking, to evaluate the corresponding
energy release rates, and io present failure criteria for the cracking process.

Of course, if the composite laminate is loaded beyond the first ply failure, then
many transverse cracks may develop in each ply. While this progressive cra-king
process is essentially a sequence of repetitive ply failures of the type discussed
herein, the formation of each individual crack is influenced by interaction with
adjacent cracks. This subject will be discussed in a separate paper.

2. CRACK GEOMETRY

Consider a unidirectionally reinforced ply of thickness 2a. which is embedded
in a laminated plate, shell. or a similar composite structure. The structure is sub-
jected to a certain incremental loading program which, at each loading step,
causes a known instantaneous strain state ¢ in the ply. A uniform thermal change
6 can also be prescribed. When the ply is free of cracks, the local strains ¢ are
assumed to be uniform. or nearly uniform in the sense that their wavelength is
much larger than the ply thickness. The local strains are then equal to their
volume averages, or overall strains, €. The given strain state ¢ and uniform ther-
mal change 0 are related to the resulting overall stress g in the ply, in analogy
with (1-17)* as:

G=Lg-0% E=M3+6m. M

where L,, M, are stiffness and compliance matrices of the uncracked ply, and €,,
m, are the thermal stress and strain vectors. We emphasize that g. € are ply
averages, not laminate averages.

Suppose that at a certain magnitude of €, which is much smaller than the failure
strain of the fiber, a single crack appears in the ply. The crack geometry depends
on the strength anisotropy of the fibrous ply, and on the state of stress g. Clearly,
cracks may propagate most easily on planes paraliel to fiber direction. In a typi-
cal part of a laminated plate or sheil, each ply usually supports a plane stress
state. In the coordinates of Figure 1 this suggests that overall stress components
022, 013, and a,, are large in comparison to d,,, G:,. and d,;. It is easy to see
that stresses g, and 0, favor cracking on x.x;,-planes. The stress 7,; does not
affect these cracks; it may cause cracking on planes perpendicular to the fibers
[2], but such cracks are seldom observed in polymer matrix composites. The re-
maining minor shear components ,; and o,, may exist in bent plates, a small
d1a contributes to crack growth on x.x;-planes, o5 does not have an effect. Of

*Equations which appear in Reference (1) will be referred to by their numbers preceded by L. ¢ g . (1-17) denotes
Equanion (17) in {1).
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Figure 1. Slit crack in a uniformly strained composite ply. Fibers and crack are aligned with \":l; I
X3 axis. i‘. e:
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course, it is essential that g, be low or zero so that splitting or delamination of c’t"s’::o':
the lamina or laminate, respectively, do not take place. ::::::!.::l
Under such circumstances the ply will crack as indicated in Figure 1. A typical ..0"'0‘:
ply crack is a slit crack which extends in the fiber direction x, across the entire K !::‘:c
foaded area of the piy. Therefore, its length can be very large, whereas its width K 3
is essentially equal to the ply thickness 2a. The laminate layers on either side e g
of the ply have certain thicknesses b and b’, let b = b’. If the ply is an exterior i -

layer, then &’ = O, and the crack becomes a surface crack. &xd\ \
3. STAGES OF CRACK FORMATION '. :"v :
A S8, ¢

Analysis of ply cracking requires a reasonably accurate model of the process.

As in other fracture events, one may anticipate that there will be an initiation .3.&;.
stage leading to formation nf a Incalized crack nucleus. and a propagation stage '1. Rl
in which the crack extends in the fiber direction across the entire loaded area of ) k’
the ply. +

In polymer matrix systems, cracks are often initiated at locations where several
fibers debond from the matrix under load [3]). Such debonded regions may also
be present as, or start from, initial flaws in the ply, but these should be infrequent

in well-made materials {4). There is no need to assume the presence of initial )

flaws. Instead, fiber debonding can be regarded as a consequence of a statistical Y .'o::"

distribution of bond strength, within a certain stress interval, along the length of “ ":.::.:.:
G



2 GEORGE J. DVORAK AND NORMAN LAwS

B A%y

ioete st N =

X o 0 ]

i X {of\oe

D | 2a  <Lfle,
! C 0? o

! o °

O NY RO " —_—

° xz R 0’ ° b PR

(D)  CRACK NUCLEUS
(@  RUNNING LONGITUDINAL (TYPE L) SLIT CRACK

Figure 2. Schematic of crack nucleus and type L slit crack.

the fiber. Debonding is also influenced by stress distribution on the microscale
which depends on fiber spacing. Garrett and Bailey [5] point to numerous studies
which suggest that debonding is more likely to occur in regions of high fiber den-
sity, or if the fibers are in contact.

The net effect of these factors on the total number of debonded regions is
difficult to quantify. However, since the number of cracks increases slowly,
especially in the initial stages of cracking, one can conclude that debonded
regions of significant size, which can actually initiate cracks at a given level of
applied strain, are not particularly numerous. Clearly, while the crack density
is low, the distances between initiation sites are many times larger than ply thick-
ness. Therefore, each crack propagates from a single initiation site at which a
sufficiently large crack nucleus has formed from a debonded region.

In the absence of experimental information about the actual geometry of a
debonded region, we assume that when one or more adjacent fibers debond from
the matrix, and these debonds join up, a larger, stable microcrack appears in the
ply. This microcrack lies in the x,x;-plane, where the ply crack eventually
forms, Figure 1. The in-plane contour of each fiber debond should resemble an
elongated ellipse, or an oval, and it seems reasonable to adopt the same contour
for the initial microcrack. The resulting shape appears in Figure 2. Let the width
of the microcrack be denoted by 24: the length dimension in x,, which may be
much larger than 2. need not be specified. The thickness of the ply is 2a, and
the microcrack is located at mid-thickness.

Now, if the ply is strained in an incremental way, the microcrack will grow
slowly until it becomes a crack nucleus of certain critical width 2é., and starts
to propagate as a Griffith crack. The slow growth process is probably time-
dependent in most polymer matrix systems, and one should relate the growth rate
to loading history. The rapid crack propagation can be regarded as inviscid, at
least in brittle resin matrices.
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4. ENERGY RELEASE RATES

To evaluate the critical size 26 of the crack nucleus under a given stress, and
to determine the direction of crack propagation, it is necessary to derive expres-
sions for energy release rates of the crack nucleus in a ply at constant overall
strain. Clearly, the crack may extend either in the x, direction, in the x; direction,
or simultaneously in both directions. To distinguish between the direction related
quantities, we indicate the relevant direction by the letter L, or T, written in
parentheses next to the appropriate symbol. For example, the energy release rate
G(T) refers to crack extension in the transverse direction x,, and G(L) to crack
extension in the longitudinal direction x;. The corresponding toughnesses are
G.(T), G.(L), critical crack widths 6.(T), 8.(L), etc. .

In general, we shall refer to a crack that propagates in the x, direction as type
T crack, and to that which propagates in the x, direction as type L crack.

It is probably obvious that due to a,,, both crack types open in the x, direction,
or in Mode 1. In addition, there are two shear modes, one along the fiber direc-
tion, and one transverse to the fiber direction. These will be designated for both
crack types as follows: Mode II represents longitudinal shear displacement in x,,
caused by a,;. and Mode III is the transverse shear mode in x, caused by 0,,.
This notation is derived from the type L cracking and adopted for type T cracks.
Subscripts I, 11, and III will denote the modes. While the crack front may change
direction, the mode designation remains related to stress components in a fixed
coordinate system.

Consider first the case of a thick ply with a small crack naucleus § < < a,
Figure 2. The nucleus is not affected by the presence of adjacent plies, and can
be regarded as a slit crack in an infinite orthotropic medium. In this case, the
energy release rates for both type T and type L can be obtained from the interac-
tion energy W,, which is equal to the totai energy released by a slit crack of unit
length x, and width & under constant €. Expressions for W; in anisotropic solids
were derived by Stroh [6] and in the orthotropic case by Laws (7]. In the notation
used in [1]; for 6 < < aq,

W, = 5 7 6[A%h 05 + A% 01 + Al 032 ()

N

Here, Az, are nonvanishing components of the crack tensor derived in {1}, taken
for a dilute concentration of cracks, i.e. for crack density parameter 8 — 0. With
the help of (1-4) to (1-6) and (1-AS) one can write

2

1 7
A3 = Al = Z(E - E—i) A = VG, 3)

where E;, = E,,, Er = E,, = E;, are the longitudinal and transverse Young's
moduli, G, = L. = Lys in [l} is the longitudinal shear modulus, and
vy = vi3 = vy, is the corresponding Poisson’s ratio.
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l The energy release rate of a crack of length 26, for an elementary extension
in the x, direction in an unbounded orthotropic solid is equal to Y2 3W,/36, or

1
&(T) = 5,5[,\32 03 + A0 + Al dh], ford << a. 4)

One can easily verify that (2) and (4) reduce to their familiar plane-strain

forms if the solid becomes isotropic.

We now turn our attention to extension of an oval crack of width 2§ in the fiber
direction x,, Figure 2. The energy release rate G(L) of this (type L) crack is equal
to the interaction energy W, released by a crack of width 24 as it extends by a
unit distance x,, and thus creates a new surface area 28«1. This is the amount
of energy change caused by unit extension of the prismatic part CC of the stage

2 crack in Figure 2. Hence,

G(L)y = W,/26 &)}
or,
1 8 0
GL) = 5 s G(T) db (6) A )
o 4 )
el

.

From (2) and (4) one obtains

5

P
e
S

GL) = i—wam, Gh + A%k + A ] fors<<a )

2550

2

Note that G(L) does not depend on the actual length of the crack nucleus in

x; direction, i.e., of the segment CC in Figure 2. The crack width § is the only = VAV
parameter reflecting crack geometry. and if its value is fixed, then G(L) is con- _‘
stant. ?
Consider now the case of a crack nucleus in a ply of intermediate thickness > ’,‘.:,":
0 < 8/a < L. As the crack approaches the interface between its own ply and an -Q‘ ,ﬁ \:
adjacent ply of different elastic properties, W; is influenced by the proximity of ; ; ,
the adjacent ply. In the direction x,. perpendicular to the crack plane, the :‘2 oy
adjacent plies are usually much stiffer than the ply under consideration, and this
causes a reduction in W, as 6/a — 1. To reflect this, (4) can be written in the ;'ﬁ;&

form valid for type T crack of any length

5

T 8{niA0h + nh Al 3h + 9k Al 03,) for (0 < 8/a < 1)(8) R
w4

"] —

Ty =
where .
"h\, ‘\,"&

& -
=9 )= o [ = . 9 v
n n,( a) K,/(o V&) i = [ [l il 9 “:Ef‘\ ;
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are stress intensity reduction coefficients which depend on crack geometry and
elastic properties of layers. The stress ¢ = 0y, for i = [, etc.

For a unit extension in the x; direction of a crack nucleus of width 25, Figure
2, when 0< é/a< I, the energy release rate is given again by (5) and (6). How-
ever, since the interaction energy W, is now influenced by the proximity of the
next ply, (7) now becomes, for 0 < é/a < L

1 - _ -
G(L) = Z T B[El A% 0% + &n Al 0%) + £ Ads 072] (10)
where, from (6) and (8):
dla ’
al 85"\ & 8’
p— —_— 2 _ _ —— .

S,—Zé,so "(a)ad(a) i=1 0 an
Again, the effect of crack geometry is refiected only through 6, and if that is
fixed, say at & = a, then G(L) is constant.

1.0 T T T T
E\zz lI(z) ; E(z!y(z) B
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04 14
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- E"e®-0.
02F . (2) .
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0 1 1 [ i
0 0.2 0.4 0.6 0.8 i.0
3
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Figure 3. Stress intensity reduction coefficients », = K.,/( g ¥§ ) for the three fracture modes.
The longitudinal shear mode is denoted by i = .
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316 GEORGE J. DVORAK AND NORMAN Laws

Coefficients 7, can be found for many crack configurations in nonhomogeneous
media. For transverse cracks in layered media one can refer to the results of Hil-
ton and Sih [8), and Cook and Erdogan [9) in the case of isotropic layers. Similar
results for laminates made of orthotropic layers can be found in {10}, and a finite
element evaluation of n, for a graphite-epoxy laminate appeared in {li].

These and related results indicate that », are influenced by the differences in
elastic constants between the layers, and particulasly so by the ratio E{}'/E{}’ of
the Young's moduli of the cracked layer (1) to that of adjacent layer (2), in direc-
tion x,, perpendicular to crack plane x.x,. Additional effects of elastic constants
exist and are discussed in [10). A significant feature of these results is that , are

not very sensitive 10 values of the moduli ratio for ESVESP < 0.1 or so, the
outer layer is perceived by the crack as very stiff or rigid. The relative thick-
nesses of the layers can have an important effect, particufarly in thin laminates
where 7, increase if the crack interacts with a surface ply [8.9.12). Thermal stress
effects in cracked laminates have apparently not received much attention, except
for {11}, and at this time can be examined only in terms of their contribution to

overall applied stress @, via Equation (1).

For illustration. Figure 3 shows the coefficients », for a crack in a laminate con- 'i‘tj:'o.:;t
sisting of isotropic layers. for Ef}V/Ef}' = 0.1, v = 0.3 [8,9). These coefficients g l':a":
can be used as an approximation for laminates consisting of transversely isotropic XN 'Q":;:‘
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Figure 4. Interaction energy reduction coefficients £, for the three fracture modes. ?:;-,*. "0
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X'y, 1 '!‘(
layers, providing that one takes E{}’' = E{'’ and E{' = E{*. The selected ratio . l:a,::f
of moduli corresponds to that of (0/90) graphite-epoxy. O
Figure 4 shows values of (6/a)¢, calculated from the », in Figure 3 and (11). &
These refer to a crack which has a certain width 6, and are plotted as functions S}: :A'.(
of é/a. ey
We note that 5, are generally available only up to /¢ = 0.90. Also, the order :Q’::# :
of stress singularity changes when the crack reaches the interface. "*'v's‘_‘ ¢
As in the case of »,. the estimates of £, in Figure 4 are rather conservative, g
taken for adjacent plies of very different properties such as one encounters in -
(0/90) graphite-epoxy. Somewhat higher values can be expected in glass-epoxy -L'":- hY;
laminates, and also in thin laminates where the crack interacts with one or two PR PN
surface plies. For example, Chou et al., (I} give values for (+ 25/90;), and h-j\'-f:“-.
(0,/90,), in AS-3501-06 graphite-epoxy system which are about 25% higher than :'._'v‘:;:';i
those shown in Figure 4. e
Finally, consider the case of a thin ply in which the crack nucleus extends Drlnalil
across the entire ply width, i.e., 6/a = 1. Only (L) is of interest in this case,
and it can be found from (10) provided that £, are known. Unstable type T crack- ;‘.‘;:;:c:;
ing cannot occur, however; one should keep in mind that the crack tips at K !,:*
X, = =a reside in a soft matrix which may not be able to support the high crack s, ‘:t,“
tip stresses. Therefore, local crack extension, across or along the ply interface, \ o) ‘l:t
may take place to relieve the stress singularity. Such localized crack extensions l:!.::!‘:f

have been observed experimentally {S]. More recent studies suggest that
delaminations as well as numerous fiber breaks can be found in the axial plies
next to transverse cracks [13). These observations are not surprising in view of
analytical studies of cracks terminating at interfaces, which suggest that the stress
intensity factor in the next ply and the magnitude of tension stresses perpendicu-
lar to the interface both increase at higher ratios of E{f’/E{} [9.12]. Therefore,
one should expect that in the presence of additional cracking at ply interface the
coefficients £, are actually larger than those predicted theoretically for cracks ter-
minating at the interface. Until the effect of interface damage is clarified, one can
use a simple estimate, e.g., £& = 1, as in [1].

For a selected £, one can find G(L) of a thin ply from (10). Note that (8) and
(9) are not affected by interface damage but (6) and (11) no longer apply.

S. FAILURE CRITERIA

If a composite ply is loaded only by a simple stress state, such as d,; or G,
acting alone, then unstable propagation of type T or type L cracks takes place
when the appropriate value of G, or G, equals or exceeds the corresponding ply
toughness G,. or G.. respectively.

It is useful to point out that fracture surface topography depends on fracture
mode. Modes I and II in a composite ply always create asperities on the fracture
surface, as the crack seeks its way between densely packed fibers. These
asperities can be interlocked and thus impede mode III cracking. Also in a
typical part of laminated plate or shell, the corresponding stress &, is usually

AR A T R LT PR R . . - e LT O - . - - . _‘_-‘.\.-a
NN A N ot ‘f\,‘r-. L L R Y CR CR i N e N ST N S SN \‘_\'-"'-u‘ N TR
£ » £ - - ~ N g . L - i

S 2 2l B



318 GEORGE J. DVORAK AND NORMAN LAws

small or equal to zero. Therefore, mode [1I need not be considered in many ap-
plications. For simplicity, we neglect mode III in the sequel.

Apart from the creation of asperities, fracture surface topography is quite dif-
ferent in modes I and II. Mode I! favors formation of hackles, and higher energy
absorption. For example, a recent review of experimental results [14] quotes
toughness values for graphite-epoxy and glass-epoxy for which K, /K, = §.

In mixed mode fracture, the toughness values are interrelated. Specific criteria
which describe this effect need to be derived from experimental data. Hahn [14)
offers a form based on fracture mechanics considerations that fits data obtained
for certain glass-epoxy and graphite-epoxy systems:

_G/ 12 7G: Gu B ; N
“‘g’(c,c) +g(c,‘)+(c,~h)2’ B o
e
Where g = Glc'/GIlt' !’:“‘ '

If G. are independent of loading mode. then g — 1, and (12) assumes a familiar
form. In actual composite plies with cpoxy matrices g = 0.1 [14).

More complex criteria can be derived as needed. In what follows we shall use
(12) as a representative mixed mode criterion, both for type 7 and type L cracks.
However, we allow for possible differences between toughness values in the two
modes by writing:

Glc(L) Y G T)

(13)

Gull) = v GudT)

Results reported in (4] and (15] indicate that v, ranges from 0.6 to 0.8 for certain
graphite-epoxy plies. Data of this kind are apparently very rare, therefore no gen-
eral conclusions about v, and v, magnitudes can be drawn at this time.

6. FAILURE OF THICK PLIES

Consider a ply in a composite laminate which is subjected to a certain
prescribed strain, such that within the ply the stress state is d,3 = ¢ 9, and is
applied incrementally until first ply failure. The ply fails by unstable propagation
of a crack aucleus, Figure 2, when the width 6 grows to a certain critical magni-
tude &.. We recall that & may increase slowly under load, possibly as a function
of time, especially during cyclic loading

6 = 6(5(:)] for 6 < 8. (14)

but once 8. has been reached. the propagation process is rapid and regarded as
time-independent.

The thickness 2a of the ply is large, so that §./a < < |.

Our objective is to determine the relationship between 4. and the measured ply
strength, and the directional sequence of the cracking process.
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We recall that according to (4) titesad

GAT) = 5% 6 A 0%

[ R
2

(15) )

1 -
. Gu(T) = wd AL 011
< L) l'.‘l.g >
st

are the energy release rates for type T cracking in x, direction. Also, from (7), D

1

-7 8 A} 02 T ) O

4 5
(16) K

I N
GL) = ;75 At 5 b

GAL)

are the rates for type L cracking in x; direction.
At any given stress state, i
h

| !
GAL) ) GAT) Tt
ford << a an "’*r{.es 1

1
5 GT) e

Gu(L)

4
Suppose that for the special case of loading 5;, # 0, 7,3 = 0, the ply fails at 'Lﬂ\\.\"'
T2 = (012)... At failure load. at least one of the following conditions must be Ravaite)

satisfied:

Aig

v
w;'i‘
LY o
T

GI(T) = Glc(T)- 6 -4 6’:(7-)
and/or, (18)
GAL) 2 Gu(L), b = 6:(L)

Ay
+ ‘; &1

ol

v
vV

where 8,.(T), 6,.(L) are critical widths of the crack nucleus in Figure 2, at onset
of crack propagation in directions x;, or x;, respectively.
When (18) are taken as equalities, it follows from (13) and (15) to (17) that

|

2@ 5

8:(T) = 2G(T)/ wA3:(02):, (19)
8i{L) = 4G\ (LY wA%2(022), 20
and YN \_‘1:-_

bi(L) = 271 8:(T) @n
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We remark that a slightly different form of (19) has been obtained by Hahn and L
Johnnesson in [l4). Since the available data indicate that 2y, > I, then Cf_
8ill) < 8,.(3). Therefore, first ply failure in thick plies occurs as a result of rype
T cracking followed by type L cracking. The crack starts to propagate as the type A
T crack in the x, direction. After the crack has propagated under constant stress ; I !
G212 = (Gaa)er to Width § = 8,(L), it also may start to propagate in the ¥, direc- &}. )
tion, as the type L crack. This bidirectional propagation continues until 26 has ! : ":l,::t
reached a certain maximum value which may not exceed the ply thickness 2a. .',‘u::.c:
but may be smaller than 2a if the type T crack becomes arrested because of its "'}H!t,!!c
interaction with an adjacent ply. In any case, the type L cracking continues in .
the x, direction at any & = 8,(L) across the entire area of the ply where ol W
G2 > (22)... We recall that G(L) does not depend on crack length, hence the 2 ]
type L crack may be arrested quite easily if the crack enters a region of low stress {:" ) ¥ 3
or locally higher toughness. . .0..0'::‘
Next, suppose that the ply is loaded in pure shear, 0, = 0. 0., # 0. .‘. .,t.'
Analogous to the tension case, one finds at failure load @;; = (G.3)., that - &
GUT) = GudT), 62 bulT) (22) ‘?:;:‘:"3‘:‘
and/or o "'::'t:
A
Gull) = GuL), 8= dudL) (23) RN
L4
where Pt
8l T) = 2Gud T/ w Asl@n) KPR
¥ l.l.'::
- W
Sull) = 4Gy (L) ® Ase(T23), ::.'::.1::
d .
an ;2_:\' ;
5::¢(L) = 2')‘" 51::(T) (24) ::";-.“- :
Lnd :‘S '
Now, if one defines g in (12) for the two crack types as f.'\:i.‘-.-i
w“‘ ~x
N SRS AL AN
g(T) = Gu(T)/Guc(T) (25)
PP
gL) = GilL)/GndL) (26) )
t‘-g. sl
then it follows that oo
;‘;\":’ (
81AT) = (T 6ud 1) b)) pIGk ."
8i(L) = g(L) uclL) 28) NS
.-\-\'.:."' ;
Recall that g = 0.1 according to [14) for certain graphite epoxy systems. This "~."'
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value is actually g(L). no information seems 10 be available about 2(T). However,
it appears that the critical width of the crack nucleus in thick plies is generally
smaller for Mode I cracking.

Again, if the ply is loaded by simple shear. the crack nucleus starts to propa-
gate in the x, direction if 2y, > 1 and 8,(T) < du(L). Bidirectional propaga-
tion may start when & = §,.(L). As in the previous case, G(L) is constant at fixed
6. Type L cracking continues across the loaded area of the ply as long as
52, =2 (61,\):,.

Finally, we consider the general case of loading g;; = g0z in the ply, which
is applied until failure at (3:;)., = q(Gaa).,. Critical width of the crack nucleus
must be found from (12) for cach q. For type T cracking one can write

(I — oTIRATH"? + &TVRUT) + RdT) 2 ) (29)
where
RAT) = GATVIG,(T)
(30)
RII(T) = GII(T)/G":( T) :

Equation (29) can be solved to yield &.(T).
Similarly, for type L cracking, the equation that can be used to find 6.(L) is

(I — gIRALN* + gLy R(L) + Ru(l) = 1 (3D

where R(L). R,(L) are defined in analogy with (30).
Type T cracking precedes type L if

3AT) < 8lL) (32)
and vice versa. In any event, bidirectional crack propagation starts when
5 = max!8/T). b.(L)) (33)

The results derived so far suggest that if many thick plies of different thickness
are tested in such a way that the loading history ) is kept constant in each test,
then & in (14) and (33) is also constant. and the measured strength must be con-

stant, regardless of actual ply thickness.
For the special case of loading by ,; = 0. 3,, # 0. the strength is given by
the smaller of the two expressions

(G22)cr = [ZGIc(T)/"I' A3y Orl T)]”z
(34)

(T22)er = [8G(L)m A3, 80(D)])'?
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For a,; = 0, 3;; # 0, the strength is given by the smaller of the two expres-
sions

(023)cr = [2011:(7.)/77 Ads 5"‘(7)1111
(35)

(023)cr = [4Gu (L) 1 A% dur(L))'?

Constant strength is seen in experimental results discussed in the sequel. Simi-
lar relations can be found from (29) and (31) for combined loading.

The strength of unidirectional laminates, or unconstrained thick plies, can be
estimated along similar lines by assuming that the crack nucleus may most
probably form at the surface. If the rate of slow growth of & depends only on ap-
plied strain history as in (14), one should anticipate that crack nuclei of whidth
26. may be found at the surface of unconstrained unidirectional laminate, as well
as in the interior. This implies that the estimate of transverse strength of un-
constrained plies is

@) = (G22)/(1.12\2) (36)
where (7,,).. follows from (34) and vice versa. The multiplier 1.12 accounts for
the stress intensity magnification of a surface crack.

7. STRENGTH OF PLIES OF INTERMEDIATE THICKNESS

Here we consider plies of any thickness 2a, subjected to a certain strain
history, such that at onset of unstable crack propagation, the critical width of the
crack nucleus 24, is comparable to 24, i.e.

0<éd./a<

To evaluate this condition in an approximate manner, one may utilize 8, found

for a thick ply of the same system.
We recall that according to (8)

! -
GAT) 72' 7 n7A%: oL
37

. ] ~
G(T) = 5 T8 Tﬂ:A‘L 013

are the re..ase rates for type T cracking in x, direction, and that from (10), for
‘ype L cracks,

1
G(L) e § & A oh

(38)
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& 7N
‘ At any given stress state, ?lz}:" ‘
¥, A
Al
1
- Gdl) = E(E:/n}) G(T)
\
, for 0 < éra < | (39) c"é:':
1 Y
W Gul) = 5 (Eu/ﬂlzl) G//(T)

) Consider first the special case of loading 0,; # 0, 5,; = 0. At failure load
;t d2: = (Gu1)... the conditions (18) must again be met. When (18) are taken as

equalities, it tollows from (13) and (37) to (39) that il
b 5l T) = 2GTym o} A%, G, Ghale
- (40 e

(L) = 4G (L) £ A3 (0)l, f:k
K and
"
8 (L) = 2yd&/m}) 8,(T) (41

Ly
< Hence. it 2v,(&7nf) > L then §,(T) < §.(L). and the crack starts to propa-

gate as a type T crack in the x, direction, and vice versa. In any case. bidirec-
tional propagation starts when

6 = max 61((7.). 6[:(L)| (42)

Analogous formulae can be found for the special case 5,; = 0, 6,3 # 0:

al 6uT)Y = 2Gu(Tiw nh Ads (G002
(43)
vd' oudLl) = 4Gu (L) Eu Ase (0050,
i
and
; Ouc(L) = 2‘1/1(211/77}:) 61 (T) 44
Under general loading. 6.3 = ¢ 3... which continues until a critical stress
B level (d,3)c, = ¢(02,)., has been reached, it is necessary to find 8.(7) and 6.(L)
- | from (12). The equation for 6.(T) is formally identical with (29} and (30) but

GiT). Gu(T) must now be taken from (37). Also. for 8.(L) one can use (31) with
Gd(L) and G,(L) from (38). Once 6.(T) and 6.(L) have been found from the
measured ply strength and toughness, one can find that type T cracking precedes

h type L if
%4
. 8(T) < 6.(L) (45)
i
reS
~ R
Al e
- R
DN
- . ".'\."
x, A‘.,l' .‘V‘
AN
.
ANy
. LY
?; ‘;-."C\
N
v\"\
s
Y th ()
‘ )
- L )
\_“._‘-.'
LT q_'_-‘i.
I W e T T T L M T T e e WA o PRI : o e N e




TR s

-

T

NSRS TR AV U R N % SN UN R PR R g R Ly

324 GEORGE J. DVORAK AND NORMAN Laws

and vice versa. Bidirectional propagation starts when
8 = max |8.(T), 8.(L)| (46)

In theory, one can use inversion of (40) and (43) in conjunction with Figures
3 and 4 to calculate ply strength. Current experimental data is insufficient to
justify a detailed analysis of (40) and (43), as well as (41) and (44).

The propagation process of both types of cracks is affected by crack interaction
with the adjacent ply. For type T cracking this is evident from Figure 3, where
(n? b/a) reaches a maximum at a certain value of (6/a).... and then decreases.
According to (37), G(T) also decreases. Therefore, one may find that
G(T) < G.(T) along the crack path, and the crack will stop. In fact, if 5.(T')/a
coincides with or is larger than (8/a),..., then unstable type T cracking may be
prevented altogether, and only slow growth may take place in x, direction until
6 = 8.(L).

On the other hand, type L cracks may propagate across the entire loaded area
of the ply as soon as & = &.(L). It is not certain that the crack retains its initial
width during propagation. The width will probably increase to 26 = 2a because
this wilf enhance G,(L) and G,(L). The width adjustment may occur even during
slow growth of the crack nucleus in x; direction. The crack will probably try to
fan out across ply width, especially when v, and +,, are small. This is a three-
dimensional crack problem that cannot be resolved on the basis of two-
dimensional solutions which have been used therein.

8 STRENGTH OF THIN PLIES

Here we consider plies of any thickness 2a, subjected to a certain strain
history, such that at onset of unstable crack propagation

26.(L) = 2a CT))

It follows from (40,), (43,), and their mixed mode equivalents that the strength
of thin plies is

(02)er = (4G (L) m & A2 a]'”? |, at Gy =0
48)

(023)er = [4Gu (L) x &y Adual’? |, atdn =0

In the general loading case &3 = ¢ 71, one can calculate ()., from (3)),
providing that G{L) and G,(L) are taken from (38) with 6 = a.

Accordingly, the strength of thin plies becomes related only to onset of unstable
type L cracking, much as the strength of a thick ply was related 1o type T crack-
ing.

If experimentally measured strength data are available for thin plies of variable
thickness, then one can always find G.(L) and Gy.(L) of the composite system
in question. :

At this stage it may well be necessary to consider the possibility of interface
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damage discussed at the end of Section 4. As a consequence, £, may increase
beyond their theoretical estimate. In the absence of adequate experimental infor-
mation one can tentatively take

& =& = l.and b(L) = a (49)

With this adjustment, one can calculate ply strength from (48) and (49) providing
that G,.(L) and/or G,,. (L) are known. In the general loading case 0., = q 0;; one
can calculate (3,;)., from (31), if G,(L) and Gy, (L) are taken from (38) at 6 = a.

As long as the strength of plies of intermediate thickness cannot be completely
analyzed with available data. it suffices to consider only thick and thin plies. The
transition between these two extremes can be defined as the intersection of
strength curves calculated from (34). (35), and (48), respectively. Since at either
side of this transition point the ply strength is controtled by either type (T) or
type (L) cracking, there will be a discontinuous change in the critical width of
crack nucleus from 8.(T) to 8, (L). Of course, if it were possible to analyze plies
of intermediate thickness, this discontinuity would be bridged.

9. COMPARISON WITH EXPERIMENTS

To illustrate the theoretical derivation, we interpret results presented by Bailey,
et al. [3], and by Crossman, Wang, et al., [15,16). Figure 5 shows the first set

0.3
E-glass/Epoxy
c (0/90, /0)
Qe
3
a
5 02
> - Gy (L) =250 J/m?
o
I
[
(O]
=z
[¥7)
T
n (Fyp)er
w O Ne_ ./
& ° °
w
>
7]
Z
é o Bailey (1979)
-
[o] 1 1 i 1
o] 0.4 0.8 1.2 1.6 2.0

INNER 90° PLY THICKNESS 2a (mm)
Figure 5. Comparison of theorstical results with experimental data.
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ol
Table 1. Material properties of selected plies. ! 0::":';::
E-Glass/Epoxy T300/934 i ""'-'
E. (GPa) 42 163.4 o
E (GPa) 14 1.9 H '::, X
n 0.27 03 o,\::n,:: i
o (10°4/°C) 43 035 A
ay (10°4/°C) 14.3 28.8 ! .“‘::,:.:}:
26 (°C) -125 ~125 ~ e
e
of results. Several (0/90,), coupons made of a E-glass/epoxy laminated plate were c‘"c".;i
loaded in tension, and the laminate stress or strain was recorded at first failure W :
of the 90° ply (c.f., Figure 13, p. 616 in [3]). To interpret the data, laminated N .t";
plate theory was used to calculate initial thermal stresses in the 90° ply after A
cooling from the curing temperature to room temperature, Af = —125°C. 8
Then, the transverse normal stress 7, caused in the 90° ply by loading of the leon e N
laminate was found, and superimposed with thermal stress. In this way, the palt ek
original data points were converted to ply stress d;,, and ti.en plotted in Figure A '.
5. Thermoelastic properties of the ply were taken from Table 1; these were found B
in Table 1 in {3}, and confirmed by comparison of calculated and measured N :
laminate properties. -
Next, ply toughness G, (L) = 250 J/m? was found by inversion of (48), such - L J
that the resulting (9;,).. curve fitted the experimental points at low ply thick- &
nesses. W
Then, experimental points for thick plies were used to find the average strength ‘l}.::ﬁe
of thick piies as (9,,)., = 0089 GPa. This strength exceeds the value measured by '¢:| W
on free 90° plies, which was found as 0.056 GPa, and must be converted to con- it t
strained 90° ply strength of 0.056* (1.12 V2) = 00885 GPa, with the hetp of .
(36). The prediction agrees well with the measured values. The transition be- o
tween thin and thick plies is found at 7¢ = 0.5 mm in this case. ;f"“‘ ‘:.-
AR
s A
Table 2. Critical widths of type T crack nuclei in thick plies, S
calculated from (19). R\‘v :,
E-Glass/Epoxy 7300/934 -
e ———— {
G.() () 26,(T) (mm) 26,(T) (mm) R
w ‘.“
200 0.231 0.372 i
y
400 0.461 0.745 WG
600 0.692 1117 Gui
. 800 0.922 1.489 r*?
Thick ply strength i
(GPa) 0.089 0.064 e
P
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0.3 73007934

o (£25/90,)s
® (25,/-25,/90,),
ne (903)3

& Onset of delami-
ngtion

e (0/90,/0)

o
~
1

Gyc (L) =220 y/m?

TRANSVERSE STRENGTH OF 90° PLY (GPa)

0.}
)
X o Crossman, Wang (1982)
3 ® Wang (1984)
0 i 1 A L
0 04 0.8 .2 1.6 20
n
4 INNER 90° PLY THICKNESS 2a (mm)

Figure 6. Comparison of theoretical results with experimental data.

No definite evaluation of §,.(T) can be made, because G,.(T) was not
measured. However, expected values at specified G, are shown in Table 2. For
example, if G.(T) is taken as equal to G.(L) = 250 J/m?, then
26,.(T) = 0.288 mm. In any event, 6,(T) < a. At the transition point between
- thin and thick plies 2a = 0.5 mm, hence 25,(T) < 0.5 mm. At the measured

strength of thick plies (0.089 GPa), this suggests that G,.(T) < 433 J/im?. In
reality, both 26,.(T') and G,.(T') should be much smaller, so that type T cracking
may take place even as ply thickness approaches the transition value of 0.5 mm.

Figure 6 shows similar results for a T300/934 graphite/epoxy system, which :-F'
appeared in ([15,16]. Data for three different layups. (% 25/90.),, ol
(25,/ —25,/90,),, and (0/90,/0), were superimposed to find G,.(L) in the 90° :

.f(
s

T

plies. The results are apparently not affected by the differences in layup of outside
layers. Also shown is the strength of a free (90,), ply, which again conforms with
(36). The G,.(L) values are somewhat lower than those found by Slepetz and

Y Carlson [17] for glass and graphite-epoxy systems.
: Note that the G,. values shown in Figures 5 and 6 are actually values of G,./§,
with £, taken as equal to unity, because of possible interface damage. If £, was
taken as equal to calculated values. e.g. & = 0.8 in E-glass/epoxy, then one
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[

! would obwain G,. = 200 J/m? in Figure 5, which compares better with the
G = 120 = 30 J/m? indicated for this material in Table 1 of [3]. e
Finally, we recall that G(L) does not depend on crack length, hence type L
cracks mayh be arrested rather easily due to local reduction in applied stress or
a ply toughness G,.(L). Figure 2 in [5] shows photographs of crack patterns in plies
of various thicknesses. An examination of these results reveals many arrested
cracks in a thin ply (0.75 mm) where failure depends on type L cracking. Only
very few arrested cracks can be seen in thicker plies which start to fail by type
ﬁ T cracks, and where G(L), although still constant, should be much larger than
G.(L) when the type L crack propagates along a wide front § = a > §.(L).

% 10. DISCUSSION

The theoretical results can predict strength of plies in a laminate as a function
of ply thickness and applied stress state, provided experimental values of ply
toughnesses in (13) are known. Also, the correct form of (12), and the ratios g(T)

o
:“ and g(L) in (25) and (26) are needed in case of combined loading. While some
of these parameters may not be readily available in certain applications, the
’l results are of value in estimating the benefit that enhanced ply toughness may
F have on strength.
Furthermore, the results suggest that strength of thick plies may be sig-

nificantly reduced by damage which introduces crack nuclei of sufficient size into
o, the ply. Free edge damage caused in the process of delamination or machining,
:.- as well as impact damage or penetrations can be sources of such initial cracks.
) For plies which have been damaged in this manner, one should assume that crack
. nuclei of width 26 = 2a are present from the outset, and that all ply cracking
‘ takes place in th~ fiber direction x;. The strength of such damaged plies,
regardless of thei ‘hickness, is given by thin ply formulae (46) and their equiva-
lents, and can b substantially lower than that of undamaged thick plies.
o Another application of the present results can be made if the growth rate of
the crack nucleus 4 in (14) is known for specific loading histories. As long as the
material properties in (13) are given constants, one can calculate 5.(t), and from

that the effect of the loading history on ply strength.
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ABSTRACT

A summary
subject
ates.

of recent Tresults 18 presented on the
of progressive ply cracking in fibrous lamin-
First, evaluation of stiffness changes cauged by

systems of aligned slit cracks which are parallel to
the fiber direction 1in a wunidirectional composite
lamina is discussed. Results obtained by the self-

consistent method are presented. Next, a procedure for
estimating instantaneous crack densities and stiffness
changes {n a lamina subjected to prescribed strain his~
tory is outlined. Specific examples and comparisons of
analytical and experimental results are presented for
two graphite—epoxy systems.

INTRODUCTION

In many fibrous composite systems the failure
strain of the fiber far exceeds that of the matrix.
Under load, the difference 1is usually accommodated by

matrix cracking. This is frequently observed in mono-
tonically or cyclically loaded laminated plates, where
each layer may contain a system of aligned slit cracks
which grow in the direction of the fibers and across
the thickness of the ply. Such cracks are often called
ply cracks or transverse cracks, although it 1is more
appropriate to reserve the latter for cracks which are
perpendicular to the fiber axis, and refer to cracks
which grow parallel to the fiber direction as axial
cracks.

In polymer matrix composites axial matrix cracking
typically starts at low strain levels in the weakest
off-axis ply. As loading continues, cracks appear in

other off-axis plies; also, their density 1increases
until it reaches a certain saturation level. For
example, in statically loaded (0/90); graphite-epoxy

laminates the minimum crack spacing was observed to be
equal to 3.5-4.0 thicknesses [l}. In metal matrix com-
posites, matrix cracking appears to be caused only by
cyclic loads which exceed the shakedown limit of the
laminate {2]. Under such circumstances the matrix
experiences cyclic plastic straining and, consequently,
low-cycle fat{gue failure. Both axfal and transverse

69

,;f“vf-.-’\f"f\r"-'\v;- TR AT TP AT

cracking is present, the former in off-axis plies, the
latter in zero degree plies. The crack patterns and
densities are generally similar to those found in poly-
mer matrix systems. However, saturation density
increases with load amplitude, and it is not unusual to
find cracks as close as one ply thickness.

In polymer matrix systems each crack apparently
propagates very rapidly, as a Griffith crack. In metal

matrix systems, under cyclic loading the cracks grow
slowly. However, each single crack creates only a
small {ncrement 1in average crack density of the ply.
Therefore, trangverse cracking 1s progressive in the
sengse that crack density 1increases gradually with
applied load, regardless of the rate of local crack
progagation.

In a typlcal part of a laminated composite struc-
ture, removed from concentrated loads and free edges,
matrix cracking 1s the initi{al, low-stress damage mode
under applied load. It is eventually followed by other
types of damage, such as delamination between layers
and fiber breaks; but these appear at relatively high
loads which may exceed allowable design magnitudes. 1In
contrast, matrix cracks grow at low loads, and they can
significantly impair stiffness and strength of com-
posite structures, especially those containing many
off-axis plies. For example, fatigue tests on both
polymer and metal matrix laminated plates indicate that
stiffness and residual static strength reductions
caused by cracking in plies may be as high as 10-50%
after 2 x 106 cycles of loading [2,3). It is therefore
desirable to consider the effect of matrix cracking on
composite properties in design. Furthermore, matrix
cracking is8 unavoidable, whereas certain other damage
modes, such as free edge delamination can be prevented
if appropriate precautions are taken in design.

Sufficiently general theoretical models of pro-
gressive cracking in composite laminates are apparently
not to be found in the literature. Such results as are

available for angle-ply laminates have been obtained
from finfte element calculations [1), while other
studies “ave focused on (0/90,)y laminates [4].
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The purpose of this research is to develop a pro-
cedure for prediction of crack dens.ties in individual
plies of a laminated composite structure as a function
of applied load, and to evaluate the effect of cracks
on stiffness of the structure.

The analysis has been performed in
steps:

the following

a) Evaluation of overall thermoelastic properties

of a fibrous composite which contains a cer-
tain density of aligned slit cracks.
b) Evaluation of crack densities and stiffness

changes in a single ply which is strained in a
prescribed way.

c) Evaluation of crack densities and stiffness
changes in a laminated composite plate which
is subjected to prescribed loading. Specific

examples were solved for
under in-pl.ne loads.

laminated plates

STIFFNESS CHANGES CAUSED BY A SYSTEM OF CRACKS IN A PLY

First we are concerned with evaluation of overall
compliance, thermal expansion coefficlents (or thermal
strain and stress vectors), and strain and stress aver—
ages in the phases of a fibrous lamina which contains
aligned slit cracks, and is subjected to uniform mech-
anlcal loads and thermal changes. The approach to the
problem was outlined in reference [5], where we sug-
gested that the effect of matrix crack systems on pro-
perties of fibrous composites can be analyzed, in prin-
ciple, by the same techniques which are commonly used
in evaluation of elastic constants of composite mater—
ials and fibrous laminates, e.g., by the self-
congistent method.

TWO-PHASE MODEL OF A CRACKED LAMINA

Za/ﬁ

2§¢3

1s.
X

*3
Figure 1.
1A. An infinite fibrous medium with
aligned siit cracks,
18. A fiber lamina with parallel

stit cracks.
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THREE-PHASE MODEL OF A CRACKED LAMINA

2a/8
% @
28/8
@
|
{] %.
X3
Figure 2.
2A. An infinite medium with aligned
fibers and slit cracks,
2B. A fiber monolayer with cracks.

The essential approximation in the evaluation of
stiffness and compliance changes of laminates consists
in the replacewent of a cracked layer, Figure Ib, by an
effective medium which contains many cracks, Figure la.
The crack densities can be exactly matched to provide
identical stiffnesses. However, the cracks in the layer
are not entirely surrounded by the layer material,
instead they interact with neighboring layers shich have
different elastic properties. This iInteraction 1is
limited to the vicinity of the crack tip, thus it may be
important 1in analysis of 1local crack growth at the
interface, but it has only a minor effect on lamina
stiffness. We note that a similar approximation is com-
monly accepted 1in evaluation of elastic moduli of lam-
inated composite structures reinforced by monolayers of
large diameter fibers.

When the cowmposite is reinforced by monolayers of
fibers, such as boron or silicon carbide, the cracks and
fibers may be of similar size. The appropriate model is
shown in Figure 2. It 1s analogous to that of Figure 1,
except that it contains three phases (fiber, mat:ix, and
cracks), whereas the model of Figure ! can be reduced to
two phases (composite “matrix”, and cracks)- Accord-
ingly, the models in Figures | and 2 are retcired to a
two~phase and three-phase models, respectively. From
the practical standpoint, the effect of model choice on
composite stiffness {s small. The simpler two-phase
model is thus sufficient for analysis of all fibrous
systems.

In the three phase model we designated the fiLer as
phase 1, matrix as phase 2, and cracks as phase 3. In
the two phase model phases 1| and 2 are joined in a homo-
geneous “matrix” and designated as phase 2; the voids or
cracks remain phase 3.
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The self-consistent analysis of the cracked com which are expressed 1in terms of compliances M of the
posite, as outlined in [5-7], starte with a composite effective medium as:
geometry in which the cracks are initially regarded as
ellitical cylindrical inclusions. A self-consistent Hz

estimate of overall stiffness of this medium {is A = H22H33- 23 % 3
obtained. Next, the {nclusions are evacuated, i.e., 22 ———=—= (a 4+ a))
replaced by voids. Finally, the aspect ratio of the H33 1 2
voids is adjusted so that in the limit the voids change
to cracks.
A, =, MY
To evaluate crack density, the cracks in Figure 1 44 44 55 (6)
are firgt replaced by elliptic cylindrical voids, with
&, b, denoting the major and minor semiaxes. Ifn is M M -Mz )H(H M -Hz )
the number of voids per unit area 1in the xyxz-plane, A = 2233 23 11733 13 (a% + ak)
then the volume fraction of voids is equal to c3 = mabn, 66 My, 27 2
and ¢z + ¢3 = 1. Next, let the voids be reduced to
cracks, it.e., § = b/a + 0. Then
where a} and a2 are the roots of
€y = ﬂa2n6 - % 8§ () ! 2
2
(2M33-p3)a? - (M33Mge + 2(M12M33 - M13Mp3)}a -
where 8 = 4na? is the crack density parameter. In fact, o
B 1s equal to the number of cracks of fixed length, 2 r;vf
e.g., 2a, in a square of side 2a. For example, if the #M1IM33 - M3 = 0 (7) T,
cracks are located in a ply, Figure lb, then B measures U
the distance between regularly spaced cracks in terms of These results imply that only three compliance iﬁf“&
ply thickness 2a. At 8 = 1, the distance between cracks coefficients M2, M44, and Mgg are affected by the !C‘.ﬁ
is equal to 2a, as B decreases the distance increases introduction of cracks, the remaining six terms in M T
and at 8 = 0 the cracks vanish. We recall that the are unchanged, 1.e., they remain equal to those of the
obgserved minimum distances between cracks in a satur- uncracked fiber composite. In particular
ation state are equal to 3.5-4.0 ply thicknesses, 1l.e., ° ° °
7a-Ba [l]. Corresponding values of 8 are 0.28-0.25, but Mj) = Myp » Mpp = M2 , M3 = M)3
values as high as 8 = 1 were observed in the B-AfL system
[2]. Therefore 0 < 8 £ 11is the appropriate range of By ° ° °
Y3 =~ M3 . M33 = My3 , Mss = Mss
On the macroscale, the cracked unidirectional com—
posite of Figure 1 can be regarded as an orthotropic o _ 2 1/2 \/2 v
homogeneous solid. The elastic properties of the Myo = Mo + B(MaM33 - Mp3)(a + a )/ M3 (8)
"matrix” are 1identical with those of the fibrous com— 1 2
posite and can be easily evaluated. When cracks are o _ 172
introduced, the macroscopic or overall elastic modu}i Mgq = Myq + B(MggMss) (9)
of the solid change. To make the concept of overall
moduli meaningful, it is necessary to consider overall ° _ 2 /2 2 1,2
uni form loading. Thus, we introduce uniform overall Mee = Mgg + B(MyaM33-My3) (M) 1M33-M13)
average stresses T and strains &, with components
arranged in (6*‘3 cclumn vectors and related by consti- %+ 01’2)/M33 (10)
tutive equations z
o=LlLe , €e=Ha , ) aud from (7):
where L, and M are the overall stiffness, and compli- 2 2
ance (6x6) matrices of the cracked composite, respec- a a = (M]1M33-M}3)/(M22M33-M23)
tively. M = L7l when the inverse exists. Effectibe 12
properties of uncracked fibrous material (phase 2) are
densted by LO, MO, or by Lz, M. a *o = (M33Mpp + 2(M12M33-M13M23))/
For a dilute concentratlion of aligned slit ~racks, 2
the matrices L and M can be evaluated by the self- (MoM33-M3]
congistent method. This was done in Reference [5]; the
results are: The unknown shear compliance M;,4 can be «“Stained
_ directiy from (9):
L=19~81L1L9AL (3)
- 3 -M° + 87 g2 2 ° k] 1
M=Mo 4B A, (4 Mo " My FFIB Mgg + (BT w4 a7 (D
whore
B = : 8 (5
4 las in [5-7]1, (6x6) matrices are denoted by capital
Latin or Greek letters, e.g., L, M, A, A, B, P, Q, and
(6x1) matrices by lower case bold face letters, e.g.,
The matrix % has only three nonzero components, g, €, . 5-
71
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The remaining unknowns My and Mgg are found from (8)

and (10).
These results can be utilized 1ia (4) for a more
direct evaluation of the three nonzero components of

the matrix A in (6):

o
Ay = Mgy - M5)/8 o (4] = 22, 44, 66) (12)
follows frcm (6) and
may now be substituted into
(3), and the components ol the overall stiffness L can
be found in a closed form. The resulting expressions
are given in reference {7, eqn. (A-6)].

0f course, the same result
(7). In any case, the Ay

The above procedure leads also to expressions for
thermal response of the cracked lamina. Stress and
strain averages in the composite matrix (phase 2) and
cracks (phase 3) were evaluated as well. All results
were found 1in closed form, as functions of A in (6) or

(12). Spectfic forms appear in (7}.

It is seen that the results are remarkably simple,
and similar to those that are routinely used for evalua-
tion of elastic modull of an uncracked composite medium.

This similarity is particularly useful 1in applications
of the results to laminated structures. Existing
theories for reinforced materials can be adapted to

incorporate the effect of matrix cracking.
may regard cracks as negative reinforcement
reduces stiffness of a composite, essentially
same way as fiber reinforcement enhances it.

Indeed, one
which
in the

PROGRESSIVE MATRIX CRACKING IN A PLY

This subject is discussed extensively in {8]. Ac-
cumulation of transverse cracks in a uniformly strained
fibrous lamina which is a part of a laminated plate s
analyzed there by two methods. In the first one,
thickness averages of strains and stresses in unbroken
segments of the cracked lamina are evaluated 1in an
approximate way and combined with fracture criteria for
extension of initial flaws, and for propagation of slit
cracks in the lamina. It i8 found that this approach
cannot be applied in practice at this time pecause of
insufficient information about the residual strength of
the uncracked segments. An alternative method is pro-
posed which regards the cracked lamina as an effective
medium. Volume averages of stresses and strains are
estimated by a self-consistent procedure, and cowbined
with effective failure criteria. This approach can be
applied with minimum of experimental 1information about
ply strength, such as first ply failure data. The
effective fallure criterion is satisfied by adjustment
of volume stress averages through increments of crack
density, and the resulting ply stiffness reductions,

A NEAS w4 P Tl S Nl
steps:
Let € ~c+de , 0'=0+4do (13)
be the new applied strain and thermal change. The

corresponding average stress in the ply 1s 1in analogy
with (2) '
o' = L'E' +6'2 (14)

where L' = L'(8), ' = 2'(8) are material properties

from (4) and (21) in [7) at as yet unknown value of
B=B,+d8 ; dB >0. (15)

The stress components of interest 1in the effective

failure criteria below are, according to equations (21)
and (A-3) to (A-6) 1in (7]):

o' =L'(e' ~a0')+L' (€' -aB')+L' (' -ad")
22 12 11 T- 22 22 T 23 33 A
o' =2L' &' , (16)

23 44 23

The effective fafilure criteria are selected in the form

o! o,
(_2_2)2 + (__22\2 -1 an
%1 11
Or, in analogy with the Tsai-Wu form:
- - - -2 - 2
F ¢' +F (¢') +F (o' ) =1 (18)
2 22 22 22 66 23

For 8 > 0 the magnitudes of overall strength
parameters ;;, ;;I’ or Fi, Eiz, EB6 are assumed to be

known functions of crack density B and ply thickness
2a. Their values must be adjusted after each
increment in B. If these parameters are known only in
terms of first ply failure, then the Lj; reduction
alone must balance the stresses in (17) or (18). The
crack density and stiffness reduction are
overestimated 1in such a case, but model predictions
remain on safe side in structural applications.

To determine {if dg and d9

actually cause

A

.‘l

under increasing strain. Crack densities and stiffness additional cracking, it is first necessary to evaluate '\f;gﬁ
changes may be overestimated in this case, but the re- the stresses (16) with L' = L(B,) and £'=2(B,), i.e., :p:;\.
sults remain on the sgafe side {n gstructural applica- with the material properties at the original crack ';52: }
tions. Specific results were found for two Gr/Ep sys- density B,. If these stresses make the left-hand side f,:},.,
tems. of (17) or (18) larger than unity, then an increment - by
d8 is required to reduce the coefficifents L' , and =x
The analysis of progressive cracking in an effec- 4 ;‘\J{bf
tive medium is made as follows: Suppose that a com— thus the stresses to the level allowed by the particular f?\jﬁ{;‘
posite ply {s subjected to current uniform strain g, failure criterion. EOANS
and that the corresponding crack density is 8, > O. A {"#:'f.
strain increment dg, and a thermal change d0 are ap- We recall that both L and & are decreasing func- r,;‘:
plied, and a new magnitude of B i{s sought. B is regard- tions of B, thus the ply softens under {ncreasing strain Ek; :a‘
ed as a continuous function of strain, c.f., (7], Sec- but remains elastic during unloading and reloading to
tion 2. The overall constitutive equation of the ply the current stress level (17) or (18). s
is given by (2). MO
To {llustrate typical results provided by (17), ST
The solution can be obtained 1in the following congider a graphite-epoxy ply with properties given in s;ﬁ;}Q'
[N
e
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TABLE I. The results appear in Figure 3. In each case, the
applied strain 1is plotted on the horizontal axis, the
40% 7300/5208 average stresses and crack densities on the vertical,
The constant sirengths levels are plotted as well. It
§ OF UMCRACKED MODWLUS &, is easy to see that Lf strengths were increasing with 8,
~—._ B8 0.2 06 | 1.0 then the stress compdnents would be elevated accord-
Lay-up ) ‘ ingly.
{04, 90} 100 99 99 A remarkable feature of these results 1is the
{0, 90) 9% % . strong effect of shear strain €23 on crack density
2° increase. When only shear %33, or only transverse
(0, 90) 9% 9 95 normal strain €7 is applied, one finds that B increases
about twice as fast 1in shear when2€23 is compared in
10 . 90;) 9 92 90 magnitude to €33. At the same time, the sghear strength
{0 . 90,) 9% 8 8 exceeds the tramsverse tension strength by 33%Z. This
H behavior can be related to the rate of change of the
(0,,145) 99 97 95 ' relevant stiffnessed Lp2 and Lis4 with B. We recall from
(0 ,248) 9% " 92 Figure 2 in [5] that Ly; decreases with 8 much more
rapidly than L44, from comparable initial levels. Thus
(0, (245),) 9?7 8 86 933 is relatively large, much larger than 522 for 2623 >
{+45) 9 ’e 59 | Ty2. Even at low €23/€p3 ratlos 023 keeps increasing
- with applied strain while Gy always decreases after
(0,.475) 99 9% 95 onset of cracking.
(0p,262) 9 97 9% In addition to stress changes, the ply experiences
(02,:30) 99 97 95 st1ffness change under deformation conditions of Figure
3. These are summarized in Figure 4.
(05.215) 100 99 99
PROGRESSIVE CRACKING IN LAMINATED PLATES
403 730075208 The above procedure for analysis of crack accumsl-
ation 1n a strained ply can be combined with laminated
% OF UNCRACKED MODULUS E, plate theory and thus extended to cracking laminated
plates. The theoretical background has been fully
Lay-up ~— 0.2 0.6 1.0 developed, and several examples have been solved. A com-—
plete ‘description of the results will appear in
(045 97 91 ot reference [9]. Figure 5 illustrates stress and stiff-
2°- ness changes In a plate subjected to combined loads.
(0, +45) 9% 89 8
As in the case of a lamina, cracking in laminated
(0, (2451, 9 L 80 plates must be analyzed in an 1nérementalgway. In many
! (+45) 91 " 59 applications one cannot predict the exact loading his-
i tory, or a detailed analysis may be undesirably comp lex.
i (0,,275) 100 99 » Under such clrcumstances, it is sufficient to estimate
l (0,.260) 99 97 % the maximum stiffness loss caused by the greatest pos-—
! - sible damage in individual plies. Ply properties for
(05,230) 92 4] n this case were found in [7], for large values of B.
{ (05.215) a8 6 59 Actual ply stiffness values in this case are well
N approximated when B is taken as equal to unity.
The effect of a fixed, uniform crack density in all
Table 1. Theoretical predictions of relative plies of the laminated plate, on longitudinal (Er) and
changes in axial (EL) and trans- transverse (Ep) in-plane modull_of plates of different
verse (Et) Young's moduli of lamin- layups is {llustrated in Tables 1, II, and III [10]. 1t
ated p]ales at given values of crack 18 seen that the stiffness loss caused by extensive
density 8 in all plies. cracking can be very significant in certain composite
systems.
A comparison of the theoretical results with exper-
Table 1II in (7). The ply 1s deformed by prescribed imental observations is presented in Figure 6. Axial
straing &7 and 23 in several radlal directions, while stiffness of a (0,903)g E-glass-epoxy plate {s plotted
stresses are adjusted so that oy = oj2 = 013 = 033 = 0. against observed crack density for a uniaxial tension
test. The experimental polats and shear lag analysis

For greater clarity of presentation, the ply strengths
are taken as constant:

- —-C¥
-0

G, = 0g, = 28.44 MPa , EI' » 6°F = 37.95 MPa

1 23

measured for first ply fallure of an

These values were
hence they represent relatively low

unconsatrained ply,
strengths.

PP T I T N N R I T LA AT L I LV WAL ST PR -.w - m RS . o . '_.
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Wt >

were presenced in [l1]. The theoretical (SCM) curve was
calculated with the gelf-consistent approximation
described earlier. A very good agreement of this curve
with experimente is indicated. A remarkable feature of
this correlatfon is that the only material constants
used in the analysis were the original elastic modull of
the uncracked composite. With this information the
stiffness changes were evaluated for given crack density
from (3) for the 90° plies, and overall laminate stiff-
ness change was found from laminated plate theory.
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Figure 3. Stresses in a cracking
Jamina during prescribed
proportional straining.
Plane stress, oy =
033 =0
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Figure 4. Stiffness changes in the graphite-epoxy
ply of Figure 3, as functions of applied
strain.
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60% E-GLASS/EPOXY

% OF UNCRACKED MODULUS E

3
E:::;:~\\\_\\\\\\ 0.2 0.6 1.0
!
. {0,,+85) 92 83 5
(0, +45) 88 7% 63
j (0, (+85), 84 67 50
L_g (+85) 77 51 25
% OF UNCRACKED MODULUS €4
a
, Lay-up S—— 0.2 0.6 1.0
1
] (0,,245) 86 73 64
(0, +45) 82 66 53
(0,(+85),) 80 60 “
(+45) 77 51 r]
Table II. Theoretical predictions of relative

changes in axial (E,) and transverse

) Young's
p]Z
sity B in all plies

moduli-of laminated

tes at given values of crack den-

40% BORON/ALUMINIM
X OF  UNCRACKED MODULUS

‘::;:;j-\\‘\\i\\‘» 0.2 0.4 0.6
(0,.90) % 9 9
(65.90) 9 87 8
(0. %0) 89 80 73
(0, 90) 8 n 62
(0, 90,) 80 5e 5
(Cq.205) % 9 %
65,245} % 89 8
(0, +a5) 9 84 78
(0.(2455,5) 89 80 7

L

% OF UNCRACKED MODULUS £y

ay-u 8 0.2 0.4 0.6
(04.+45) 95 % 87
0,.245) 93 8 81
(0. +45) % 82 7
(0, (+45),) 88 7 7

Tabtle III.

Theoretical predictions of relative changes in axial

(EL) and transverse (E1) Young's moduli of laminated
plates at given values of crack density B in all plies.

) a “uf !~I-r,, ’5’-," d‘r-. (W \ A. LR Wy \;\'

'\-VN

o

"

VLS VR Sy
N

..l' v

JW“ 'a
) '
L;ﬂj' ,k

q.a"‘

e

0“’

(




0* plies

w

180]-| A873801-8A
(0,/901£48)s /
Pradiction (A

-
N
~

(MPa)

100

Stress

[ @py= 0

Stress  (MPa)
8
S

=0

0.1

180

100 -

Stress (MPa)

Il L
so} %2 50 2

%y ad

OVERALL STIFFNESS

4 -

,f.\
(MPa)
8
T

’ 10.2 L3

0.1

Froead Mol BEEEY 0.0 [} i L

Figure

1.28

300 600 800 o 300 600 900
Gaa (MPa) 04 (MPa)
33 £

5. Calculated changes in ply stresses
Ty and plate stiffnesses Li; in a
grgphite—epoxy plate loaded qn simple
tension o3 in the 0° direction. A1l
stresses are in local ply coordinates,
the fiber direction coincides with
Tocal X3 axis of a ply.

Normalized Stitfness

0.00

E - Glass

A Experimental (Specimen A2)
Theoreticat (Shear Lag)
Theoretical (SCM)

I 1 1

0.00

'Figu

St 4"\ Toa TP e

0.80 1.00 1.80

Crack Density (Cracks/in.)
re 6. Comparison of experimentally observed
stiffness changes and crack densities
[11] with theoretical predictions.

The (SCM) curve was calculated from
the self-consistent estimate of stiff-
ness in 90° plies, Equation (3).
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with experimental
[12] who measured

or strain
tension, and,
and Crossman

Additional comparisons were made
results obtained by Hwang and Hahn
crack density as a function of applied stress
in AS/3501-5A laminated plate coupons in
with similar experiments reported by Ryder
[13] for laminated T300/5208 plate coupons.

Analytical predictions of crack densities
laminated plate coupons were made as follows: First,
laminated plate theory was used to calculate residual
thermal stresses in each ply caused by cooldown from the
curing temperature. The temperature difference was
AT=147°C for both systems. Then ply stresses caused by
a uniaxial applied load were evaluated and superimposed

in these

on the thermal residual stresses in each ply. Next,
(18) was rewritten for each ply in the form given by
Hahn [14]):
5. 2
722 522 %23
(1-g) (=) 49 (=) + (=) -1=0 (19)
51 95 o1l

where the stresses 022, 023 are taken in local ply coor-
dinates, x3 is parallel to local fiber direction. The
01, 01y denote critical stresses at first ply failure.
The parameter, which accounts for failure mode inter—
action in an approximate way was taken as g=0.l.

Now, to determine 01 and 01y for the laminate test
data shown in Figures 7 and 8, one calculates the local
stress Opp at first ply failure in the 90° ply. Since
g23 = U in this ply, one obtains Ty from (19). Then,
additional stress is applied to the laminate, and crack
density B 1in the 90° ply is calculated incrementally,
according to the sequence (13) to (19). The stiffness of
the 90° ply gradually decreases in the process. When
the applied stress reaches the magnitude required for
first ply failure in the +45° ply, o; in this ply is
again found from (19). I

These results are listed in Table IV as predictions
(A) and (B) for the two coupons.

In a similar way, the results in Figures 9 apd 10
were interpreted and provided values of 61 and Grypin pre-
dictions (C), (D) and (E), Table IV.

8

AS / 3501-5A
(0,/90/45)g

(A) (8)
© Coupon A-b-4

ar e Coupon A-b-6

= Theoretical Predictions
(A) and (B) for +45° ples

Average Crack Spacing (mm)
[ ]

] 400 500 600 700 800 900

Apphed Stress  (MPa)

Comparison of predicted and observed
average crack spacing in a laminated
plate subjected to uniaxial tension.
fxperimental data from Hwang and
Hahn (1982)

Figure 7.
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Average Crack Spacing (mm)

AS / 3501-5A
(0,/90/245),

(A),(B)

© Coupon A-b-4
¢ Coupon A-b-8

= Theoretical Predictions
(A) and (B) for 90° plles

Applled Stress  (MPa)

Figure 8. Comparison of predicted and observed

average cruck spacing in a laminated
plate subjected to uniaxial tension.
Experimental data from Hwang and
Hahn (1982).

16 +
1}
12 i

10 |

Crack Spacing (mm)

T300 / 5208 | ®0°)  (+459)l(-45")
(0/90/+45),

Cracks In
& 90° ples
© +485° ples

{No cracks found In ~45° plies)

== Theoretical Prediction (C)

A 1 1 1 J
5

Strain  (10°%)

Figure 9. Comparison of predicted and observed

average crack spacing in a laminated
plate subjected to uniaxial exten-
sion. Experimental data from Ryder
and Crossman (1984).

Table IV. Effective Ply Strength
At First Ply Failure

PeDicTiON G, u MaTeniaL Lavue Couron
a »
A 8.5 T35 AS/THI-SA  (0,/90/:45),  Ased
8 as 15 ©2/%0/245)s  A-pb
¢ L 105 TIO0/S08  (Q/90/w4S),

¥ e

& R X R A T IO ™ R R S R R TR R >
1" L T300 / 5208
ol ° (€) (Cy/ 90,08
E wl o Coupon AY
. o Coupon A2
o [ N o
= Theorsticel Predictions
. (D) and {E) for 00" plies
g 4t
2
I o e ..
° B AL I s 1
[ 2 4 [} ] 10 172
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Figure 10. Comparison of predicted and observed
average crack spacing in a laminated
plate subjected to uniaxial exten-
sion. Experimental data from Ryder
and Crossman (1984).

The experimentally found values of the critical
stress Op and 017 at first ply failure 1in (19) are
actually the sole material parameters needed to fit the
data. The only additional information entering the
analysls are original elastic moduli of the undamaged
laminate, and the empirical factor g=0.l in (19).

The magitudes of Ty and G11 are fairly consistent.
Note that predictions (A) and (B) apply to both O° and
45° plies 1in Figure 7 and 8. Differences between (A)
and (B) are caused by differences in experimental data.
Prediction (C) is sufficient for all plies in Figure 9,
except for the -45° ply as explained below. Predic-
tions (D) and (E) in Figure (10) are different because
the data points for the two coupons are so far apart.

It would be desirable to find that one get ot crit-
ical stresses fits all data for a particular system, or
for the two grafite~epoxy systems of Figures 7 to 10.
This is not exactly possible but we note that ¥y 1n (A)
(B) and (D) are similar; idealiy they should coincide
since they refer to a single system. Still they are
closer together than those in (D) and (E) found for not
only one system, but also one layup. In fact the two
coupons Al and A2 were taken from the same laminated
plate.

Therefore, one can conclude that the differences in
effective ply strength at first ply failure in Table IV
are caused by variations in material properties that
affect the experimental data.

A surprising feature of the experimentLal results
shown 1in Figures 7 and 9 is that no cracks were observed
in the interior -45° plies. One would certainly expect
to find cracks in these layers which experience the same
average strain state as the +45° plies where numerous
cracks were found. In fact, the -45° plies form a
single ply of double thickness, and this should make {t
more susceptible to matrix cracking than the +45° plies
of single thickness. This phenomenon tequires further
study.
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CONCLUSIONS

1. An analytical technique has been developed for
modeling of progressive transverse matrix cracking
in laminated composite plates. The analysis con~
sists of three steps . First, self-consistent
estimates of laminate stiffness changes are found
for a given crack density from (3) and (4). Next,
the rate of crack density increase under applied
load 1s evaluated from (13) to (19) on the basis of
a selected ply failure criterion. Finally, the ply
analysis is made in terms of ply stress state for a
ply embedded in a laminate with several cracking
plies. The instantaneous ply stresses follow from a
simple adaptation of laminate plate theory.

2, A good agreemeat of the theory with several sets of
experimental data was found. The theoretical pre-
dictions require a minimum amount of experimentally
derived information, such as first ply failure
stresses in the cracking ply, and elastic moduli of
the undamaged laminate. No empirical parameters are
required outside the ply failure criteria.

3. The theory makes it possible to calculate the
instantaneous crack density in each ply, the Instan-—
taneous stresses in each ply of the laminate, as
well as the average fiber and matrix stresses in
each ply, after application of each load or strain
increment to the laminate. The laminate can be sub-
jected to combined three dimentional loading, and
also to varying uniform thermal changes in the
course of mechanical loading.

4. The analysis can be implemented through a simple
numerical routine, even on a personal computer. In
fact, the entire procedure for each loading step is
rather eimilar to that used in elasticity analysis
of laminated plates.
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ANALYSIS OF FIRST PLY FAILURE IN COMPOSITE
LAMINATES

GEORGE J. DYORAK
Department of Civil Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, US.A.

and

NORMAN LAWS
Department of Mechanical Engineering, University of Pittsburgh, Pitisburgh, PA 15260, U.S.A.

Abstract—The mechanics of transversc cracking in an elastic fibrous composite ply is explored for the
case of low crack density. Cracks are assumed to initiate from a nucleus created by localized fiber
debonding and matrix cracking. It is found that cracks may propagate in two directions on planes
which are parallel to the fiber axis and perpendicular to the midplane of the ply. In general, crack
propagation in the direction of the fiber axis controls the strength of thin plies, while cracking in the
direction perpendicular to the fiber axis determines the strength of thick plies. The theory relates ply
thickness, crack geometry and ply toughness to ply strength. It predicts a significant increase in
strength with decreasing ply thickness in constrained thin plies. The strength of thick plies is found to
be constant, but it may be reduced by preexisting damage. Results are illustrated by comparison with
experimental data.

1. INTRODUCTION

IN THIS paper we discuss some fracture mechanics problems associated with transverse cracking in
composite laminates. We focus our attention at a singlie ply in a typical part of a laminated structure,
removed from free edges and other stress concentrations. The ply is subjected to a certain
deformation history in the course of incremental loading applied to the laminate. In particular, we
explore the initial stage of the cracking process which consists of first ply failure. and of few
subsequent failures at locations which are far apart from each other, so that the cracks do not interact.
Our goal is to identify the failure modes which cause transverse cracking, relate them to appropriate
fracture problems, and analyse the different stages of the cracking process.

2. CRACK GEOMETRY

A unidirectionally reinforced ply of thickness 2a is embedded in a laminated plate or a similar
composite structure. The structure is subjected to a certain incremental loading program which, at
each loading step, causes a known instantaneous strain state in the ply. We assume that in a crack-
free ply the local strains are uniform, or nearly uniform, and equal to their volume averages, or overalil
strains & The strain .tate & the thermal change 8, and the resulting overall stress ¢ in the ply are
related by:

6=Log—-fMy, &=Mya+06m, (1)

where Ly, M, are stiffness and compliance matrices of the uncracked ply, and l,, m, are the thermal
stress and strain vectors. We emphasize that &, & are ply averages, not laminate averages.

In many plate composite structures, each ply usually supports a plane state of stress. In the
coordinates of Fig. 1 this suggests that overall stress components 6,,, 6,5 and &, are large in
comparison with &,,, &, , and &, ;. [t is easy to see that stresses ¢, and 6, favor cracking on x, x -
planes. The stress 44, does not affect these cracks. The remaining minor shear components g, ; and
@, ; may exist in bent plates, but only &, , may contribute to cracking. The normal stress &, , is usually
small. Under such loading conditions the ply will crack as indicated in Fig. 1. The laminate layers on
either side of the ply have a certain thickness b and b'. If b 2 b, then we require that b » 2a, the ply
thickness.
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b
20
b
Fig. 1. Slit crack in a uniformly strained composite ply. Fibers and crack are aligned with x, axis. i
3. CRACK NUCLEATION .

It is commonly held that transverse cracks in polymer matrix composites are associated with
initial fiber debonding. Several debonds may coalesce into a stable crack nucleus which grows slowly
until it reaches a critical size, and then propagates as a Griffith crack. Since the in-plane contour of
each fiber debond resembles an ellipse or an elongated oval, it seems reasonable to assume the same
contour for the initial microcrack. The resulting shape appears in Fig. 2. Let 25 denote the width of
the microcrack. The length in x,, which may be much larger than 26, need not be specified. The
thickness of the ply is 2a, the microcrack is located at mid-thickness but this does not affect the results
that follow.

Now, if the ply is strained in an incremental way, the microcrack will grow slowly until it
becomes a crack nucleus of certain critical width 24_, and starts to propagate as a Griffith crack. The
slow growth process is probably time-dependent in most polymer matrix systems, and one should
relate the growth rate to loading history. Therefore, we write

& = S(&(1)), for § € 6,. 2)

The rapid crack propagation can be regarded as inviscid, at least in brittle resin matrices.

4. STRENGTH OF THIN PLIES

We define thin plies by the relation
28=2a, ford<é. (3)

In other words, the ply thickness is such that the debonded region remains stable while it grows in the
ply, and it may become unstable only after it has extended across the entire ply thickness. The
definition clearly depends on ply properties, such as toughness and crack growth rate (2). It also
suggests that plies which contain through the thickness initial flaws or cracks induced by other types
of damage must be regarded as “thin” plies regardless of their actual thickness.

Fig. 2 Schematic of crack nucleus and type L sht crack. T Crack nucleus, 2 running longitudinal (type L)
shit crack.
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Fig. 3. Extension by unit length of a type L slit crack in a fibrous composite ply.

o talh. 27

The energy release rate of the crack nucleus can be derived according to Fig. 3. Initially, the
nucleus consists of a prismatic part CC, and precursor regions which are approximated as
semielliptical cracks. The crack nucleus can extend only in the fiber direction x,, and, as it does so, 2
unit extension CC’ will increase the crack area by 2a*1. The prismatic part extends by unit length and
one of the precursor regions translates.

Let W, denote the energy released by formation of the prismatic section of unit length of a ply
crack of width 2a. This is the interaction energy of the crack section. Then, the energy release rate of
the crack can be written as:

G(L) = W,/2a 4

where (L) indicates that the crack extends in the longitudinal direction in the ply. Asin [1], we refer to
such cracks as longitudinal or type L cracks.

It is probably obvious that W, is equal to the energy released by a microcrack of unit width x,
which has extended in the transverse direction x, to length 2a. One can write:

G(L) = ‘—i J'n G(T)dé, (5)
0

where G(T) is the energy release rate for extension of the microcrack in the transverse direction x,.
Again, cracks growing in the x, direction will be referred to as T-type cracks.

If the crack nucleus was located in a very thick ply, 6 < a, then W, could be determined from
known solutions for cracks in orthotropic solids[2, 3]. In a thin ply, the crack interacts with adjacent
plies of different elastic moduli, and this has an influence on W,. As in [1], this can be reflected by
writing (4) in the form

G(L) = 4na(&,A%,63, +EuAda3s +EnAled1.]- (6)

Here &,; are the overall stresses caused in the ply by the applied strains ;;, and by a uniform thermal
change 6,, &, i =1, II, III are reduction coefficients which reflect interaction of the crack in Fig. 3 with
the adjacent plies, for each of the crack opening modes I, II or III. Note that mode I is the opening
mode caused by ¢,,, mode 11 is the longitudinal shear mode, and mode III is the transverse shear
mode. The A; are nonvanishing components of the crack tensor Af}, derived in [4] and [5], and taken
for dilute concentration of cracks:

1 v
A(Z)Z = A26 = 2<'E——EL_)’ Ag‘ = l/GL7 (7)
T L

where £, = E,,, E; = E,, = E,, are the longitudinal and transverse Young's moduli, G, = L, =
Ly in [4] is the longitudinal shear modulus,and v = v, = v,, is the corresponding Poisson’s ratio.
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Coefficients &, can be found for many crack configurations in layered media; this is discussed in
[1]. For example, §;=0.65 in (0/90) graphite-epoxy, and §,=0.8 in (0/90) glass—epoxy. However,
one should keep in mind that the crack tips at x;, = +a reside in a soft matrix which may not be able
to support the high crack-tip stresses. Therefore, as the crack propagates in the longitudinal
direction, local crack extension along ply interface, and across this interface into the adjacent ply may
take place to relieve the stress singularity. Such localized crack extension has been observed
experimentally; it may be present as delamination as well as extensive fiber cracks in the next
ply[6, 7]. This additional cracking will elevate W,, and the reduction coefficients &, in (6). Exact values
of £, are not available for running cracks.

Fracture strength of a thin ply can be found on the grounds that the G(L) reaches a certain
critical value. If @, or 4,5 were acting alone, then one could compare G,(L) or G, (L) to the
corresponding ply toughness G (L) or G (L). However, under combined loading, the modes are
interrelated. Specific criteria which describe this effect need to be derived from experimental data.
Hahn([8] offers a form based on fracture mechanics considerations that fits data obtained for certain

glass—epoxy and graphite-epoxy systems:

G\ (Gr) <Gu)
(1- (_)+_+_>1, 8
g) Glc g Glc Gllc ( )
where g = G, /Gy.

If G, are independent of loading mode, then g — 1 and (8) assumes a familiar form. In actual
composite plies with epoxy matrices g = 0.1. Note that no allowance is made for mode III cracking.
Modes I and I1 in a composite ply always create asperities on the fracture surface, as the crack seeks
its way between densely packed fibers. These asperities can be interiocked and thus impede mode I11
cracking. Also, in a typical part of laminated plate or shell, the corresponding stress &, , is usually
small or equal to zero. Therefore, mode III need not be considered in most applications.

From (6) and (8) one can find strength of thin plies as

(G23) = [4GIC(L)/(7zf,Agza)]”2, at 6,3 =0, (9a)
(G23) = [4G“c(L)/(1r§"A2‘a)]”2, at g;; = 0. (9b)

In the general loading case &,; = q@,,, one can calculate (7,,),, from (8).
Accordingly, the strength of thin plies becomes related only to onset of unstable longitudinal (type

L) cracking.
If experimentally measured strength data are available for thin plies of variable thickness, then

one can find G,(L) and G,,(L) of the composite system in question.

5. STRENGTH OF THICK PLIES
In analogy with (3), we define thick plies by the relationship

26 < 2a, for § €4, (10)

and adopt the configuration of the crack nucleus in Fig. 2. There is no interaction between the
microcrack and the adjacent plies; hence &, = 1 in (6), and the crack width is now equal to J rather
than a. For a nucleus of width J one obtains:

G(L) = 4nd[A%:60: +ALdT, +A%61,],  ford <a. ()

This release rate is appropriate if the nucleus propagates in x, direction, as a type L crack. Of
course, propagation in the x, direction is also possible. Such cracking is referred to as type T
cracking. The corresponding energy release rate is

G(T) = ¢W,/dd, (12)
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and from (4) and (11) it follows that
G(T) = 4nd[A3,03,+ A3+ A262,], for b <a. (13)
o G(T) = 2G(L). (14)

At this point we again appeal to the mixed mode failure criterion (8). However, we allow for

possible differences between toughness values in the two modes by writing:

Glc“-') =7 Glc(T)
Gue(L) = yuGe(T).

(15)

Results reported in [9] and [10] indicate that y, ranges from 0.6 to 0.8 for certain graphite-epoxy
plies. Data of this kind are apparently very rare, therefore no general conclusions about y, and y,
magnitudes can be drawn at this time.

To determine if a given crack nucleus of width &, will propagate as a type T or type L crack, one
can evaluate the critical values 5.(T) and é.(L). For example, for modes I and II taken separately, one
can find from (14) and (5) that

Oic(L) = 29, 6, (T)
Sye(L) = 2yy Oy (T).

(16)

In a mixed mode case one needs to invoke (8). Since available data indicate that 2y, > 1,onefinds that

0(T) < d,(L). If one assumes that 6.(T) < é.(L) unaer mixed loading as well, then it follows that
first ply failure of thick plies occurs as a result of transverse (type T) cracking, followed by longitudinal

(type L) cracking.
The crack starts to propagate as the type T crack in the x, direction. After the crack has
propagated under constant stress to width § = 8.(L), it also may start to propagate in the x,

Jirection, as the type L crack. This bidirectional propagation continues until 26 has reached the ply

thickness 2a. In any case, the type L cracking continues in the x ; direction at any é > ,.(L) across the
entire loaded area of the ply where (8) is satisfied. '

The results derived so far suggest that if many thick plies of different thickness are tested in such a
way that the loading history &(t) is kept constant in each test, then &, in (2) and (16) are also constant,
and the measured strength must be constant, regardless of actual ply thickness.

For 6,, =0, 6,, # 0, the strength is given by

(022)er = [2Gi(TV/(rAS; 81 (T)] 2. (17)
For 6;, =0, 6,5 # 0, the strength is given by
(23)e = [2Gy(TV(RA L 8 (T)]'2. (18)

Constant strength is seen in experimental results discussed in the sequel. Similar relations can be
found from (8) for combined loading.

Equations (17) and (18) can be used to predict strength only if the 6.(T) and G,(T) are known.
This is usually not the case since 4.(T) cannot be observed. Therefore, actual values of thick ply
strength need to be measured directly in experiments.

One possible application of (17) and (18) is in experimental work aimed at evaluation of growth
rates of debonded regions under different loading conditions. Such results would provide an
experimental foundation for (2).

In conclusion of the theoretical part we note that one can also examine failure of plies of
intermediate thickness, where the crack nucleus interacts with adjacent plies. This problem is
discussed in [1]. As in the case of thick plies, implementation of the analysis requires knowledge of
material properties which is not available at this time.

It is clear that a transition exists between the constant strength of thick plies (17), (18), and the
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Fig. 4. Comparison of theoretical results with experimental data.

variable strength of thin plies (9). This transition takes place at a certain value of ply thickness 2a that
can be determined from strength measurements on plies of different thickness; as shown in the sequel.

6. COMPARISON WITH EXPERIMENTS

To illustrate the theoretical derivation, we interpret results presented by Wang[ 10], Bailey et
al.{11], and by Crossman and Wang[12]. Figure 4 shows the first set of results. Several (0/90,),
coupons made of an E-glass epoxy laminated plate were loaded in tension, and the laminate stress or
strain was recorded at first failure of the 90° ply. To interpret the data, laminated plate theory was
used to calculate initial thermal stresses in the 90° ply after cooling from the curing temperature to
room temperature, A9 = — 125°C. Then, the transverse normal stress g,, caused in the 90° ply by
loading of the laminate was found, and superimposed with thermal stress. In this way, the original
data points were converted to ply stress &,,, and then plotted in Fig. 4. Thermoelastic properties of
the ply were taken from Table 1.

Next, ply toughness G,.(L) = 250 J/m? was found by inversion of (9a) such that the resulting
(63,). curve fitted the experimental points at low ply thicknesses.

Then, experimental points for thick plies were used to find the average strength of thick plies as
(612) = 0.089 GPa. The transition between thin and thick plies was found at 2a =0.5mm in this case.

No definite evaluation of 6,(T) can be made, because G, .(T) was not measured. However,
expected values at specified G,, are shown in Table 2. For example, if G, (T) is taken as equal to
G(L) = 250 J/m?, then 25,.(T) = 0.288 mm. In any event, §,(T) < a. At the transition point between
thin and thick plies 2a = 0.5 mm, hence 25,.(T) < 0.5 mm. At the measured strength of thick plies
(0.089 GPa), this suggests that G,.(T) < 433 J/m?. In reality, both 26,.(T) and G(T) should be much
smaller, so that type T cracking may take place even as ply thickness approaches the transition value
of 0.5 mm.

Figure 5 shows similar results for a T300/934 graphite/epoxy system, which appeared in [ 10, 12].
Data for three different layups, (+25/90,),, (25,/ ~25,/90,),, and (0/90,/0), were superimposed to

Table 1. Material properties of selected plics

E-Glass—epoxy T300/934
E, (GPa) 42 163.4
Ey (GPa) 14 1.9
VL .27 03
2 (107% O) 43 0.36
2 (107 C) 14.3 288
AV Q) - 125 - 125
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Table 2. Critical ‘widths i of type T crack nuclei in thick plies, calculated from 'l..‘v.."l'.:x
s eq. (17 OO
eq. (17) i .',.:’..::,i
E-Glass-epoxy ! T300/934 DTaX

Gi(T) 1I/m?) 261e(T (mm) 201c(T) (mm. L4
SRR
100 a.1s 0.185 Rt
200 0.231 0372 ,s,::.,t:o,t:
400 0461 0.746 it ph!,
600 0692 1117 |:|.|:",|:':;

.922 1.489 M)
o0 0 8 R

Thick ply strength B

(GPa) 0.089 0.064 R

' ‘ A )
IR A
RO

o (225/304)

0.3

v (28,/-29,/90414 -
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Fig. 5. Comparison of theoretical results with experimental data. ("{:§ "ﬁ';
osiab, et
. . . X
find G, (L) in the 90° plies. The resuits are apparently not significantly affected by the differences in ] o
layup of outside layers. Note that the G, values shown in Figs 4 and 5 are actually values of G,./¢,
with {, taken as equal to unity because of interface damage. If £, was taken as equal to 'ﬁ:‘ e
calculated values, e.g. & = 0.8 in E-glass-epoxy, then one would obtain G, = 200 J/m? in Fig. 5. !,‘::\‘:,'
which compares better with the G,. = 120+ 30 J/m? indicated for this material in Table 1 of [11]. ' 'h:::‘:::
='
7. CONCLUSIONS RN
(a) First ply failure stress of plies of different thicknesses can be predicted theoretically, providing F:;-‘\ ~
that ply toughness values and initial flaw sizes are known. In cases of thin plies the ply thickness RO SASK
itself determines the initial flaw size and ply strength can be directly related to toughness via egqs q:. "’.‘\{»\
(9). In case of thick or moderately thick plies the analysis cannot be easily implemented for lack of ’.}. S )
experimental information about relevant material properties. :3:‘,-(;;‘_9&.
(b) If a ply of any thickness contains a through-the-thickness flaw—such flaws can be caused by T
impact, penetrations, or similar types of damage—then it must be regarded as thin ply in strength "y
estimates. Therefore, it is conservative to regard all plies as thin plies, and neglect the additional e
strength which may be found in undamaged thick plies. E:’.\J._
Ot ".u' .
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THE EFFECT OF FIBER BREAKS AND ALIGNED
PENNY-SHAPED CRACKS ON THE STIFFNESS
AND ENERGY RELEASE RATES IN
UNIDIRECTIONAL COMPOSITES
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Abstract—The loss of stiffness due to penny-shaped cracks associated with fiber breaks in a uni-
directional composite is the main theme of the paper. Explicit results are given for the non-
trivial Hashin-Shtrikman bound together with the estimates obtained from the self~consistent and
differential schemes. In addition the paper contains some results on energy release rates for two
different crack growth mechanisms. It is shown that, in theory, the differential scheme enjoys a
distinguished position.

i. INTRODUCTION

This paper is mainly concerned with the changes of stiffness and strength of a unidirectional
fiber-reinforced solid due to fiber breaks accompanied by penny-shaped cracks at the ends
of the broken fibers.

The literature on the effect of crack distributions on the response of solids falls into
two categories. First one can consider periodic distributions of cracks, see e.g. Delameter
et al[l]. Second, and this is by far the major part of the literature, one can consider
random distributions of cracks. Within this second category, the pioneering paper is due to
Budiansky and O'Connell[2], although a less general approach was given independently by
Salganik[3). The work of Budiansky and O'Connell(2] was especially directed at predicting
the loss of stiffness of an isotropic solid due to a volume distribution of randomly oriented
elliptical cracks—leading to isotropy of the cracked solid. Additional work on the effect of
slit cracks on the stiffness of anisotropic solids has been given by Gottesman er gl.[4), and
by Laws and Dvorak($, 6).

It is particularly relevant to the analysis of this paper to call attention to the work of
Hoenig{7] who was the first to consider anisotropic distributions of cracks. In addition, it
is important to recognize the contributions of Mura and Taya[8)} and Taya[9) which were
addressed to the problem of determining the effect of fiber breaks on the response of
unidirectional fiber-reinforced materials.

In this paper we extend the work of various authors{7-9] in that we obtain self-
consistent estimates for the reduction in stiffness of unidirectional composites containing
penny-shaped cracks. In addition we obtain the only non-trivial Hashin~Shtrikman bound
on the moduli of the cracked solid. We also derive the appropriate differential scheme model
for the loss of stiffness.

We show how both the self-consistent and differential scheme results are entirely
consistent with the Hashin-Shtrikman bound. Further we show explicitly that the resuits
of Mura and Tayai8. 9] coincide with the Hashin—Shtrikman bound.

As a further illustration of the results presented herein, we pay brief attention to
isotropic solids containing distributions of aligned penny-shaped cracks and amongst other
things, recover some results first given by Hoenig{7]. The relevance of this anaiysis in the
study of micro-cracking in ceramics is discussed by Laws and Brockenbrough{10).
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1270 N. Laws and G. J. Dvorak . q
Finally we investigate the influence of cracks on energy release rates. Here, we consider ; "::f
two distinct cases. First, we consider situations in which all cracks extend simultaneously. : 4.*1:;:;’
Second, we consider only one crack in the effective cracked solid. It turns out that the :’:'f': Y
differential scheme enjoys a distinguished position as far as the evaluation of energy release DA
rates is concerned. Whether or not this is of physical significance is an open question. .
':“:2;;:
(
' 2. PHYSICAL MOTIVATION E' ,E?‘:
b
Consider a unidirectional graphite-epoxy composite subject to loading parallel to the t:':::'::
fibers. It is known that such composite specimens eventually suffer fiber breakage. The AN
density of such fiber breaks can be quite large before final fracture occurs. At the end of . 3
each broken fiber, one usually finds penny-shaped cracks (whose normals are in the fiber .'o 0
direction). Under continued loading, these cracks may extend-—see the discussion of Mura \? 0%
and Taya[8, 9] and the references contained therein. x Isft':
In addition there is ample evidence that in cross-ply composite laminates, one often :l‘ “::'
sees fiber breaks in the 0° plies at the end of transverse cracks in the 90° plies. Furthermore, ‘ "
some recent work by Laws and Brockenbrough[10] indicates the relevance of considering SOTAK
aligned penny-shaped micro-cracks in ceramics. '|:. '::
Another application arises in fibrous composites which can develop aligned matrix Q.l:: ;:
, cracks on planes perpendicular to the fibers. Such cracks are confined to the matrix and do W ’..lﬁ‘;
not extend through the fibers. They have been observed in 0° plies of cyclically loaded ',: ‘4:’,:1
boron—aluminum laminates by Dvorak and Johnson[11). s
It is., therefore, desirable that the effects of aligned penny-shaped cracks on the stiffness SRR
and strength of both composites and single phase materials be more fully understood. ::0::"::;‘
08
3. ANALYSIS ;::::a::‘
. ()M
vy
In this section we present the mechanics of the effect of distributions of aligned penny- ' .~
shaped cracks on the stiffness and strength of solids. For simplicity we shall discuss cracked i3,
composites by regarding the uncracked fibrous composite as an effective homogeneous v, :;:n
material. This is, of course, commonplace in the theory of composites, but some further g9 |.u;::
explanation is required here since the cracked composite will contain both long and short ":’{.:,:
(broken) fibers. :.::. o
Now Laws and McLaughlin[12], followed by Chou et al.[13], have quantified the effects T g
of fiber aspect ratio on the overall moduli of aligned short fiber-reinforced composites. The . it
general conclusion is that for aspect ratios greater than 100, say, the stiffness of the ¢: 0
composite is insensitive to fiber length. Since the applications discussed in Section 2 all :%:!::;
indicate broken fibers whose aspect ratios are much larger than 100, there is no loss of ) '\|::.o'
generality in considering only long fibers. [f we interpret correctly, Taya[9] arrives at the ). :l.‘:»
same conclusion, by somewhat different methods. '
In addition for transverse cracks in composite laminates the use of a model with cracks AT
in an otherwise homogeneous solid is well established. ':
The notation and basic ideas presented here are taken directly from the work of Laws ,\"5‘_‘,‘- Y
and Dvorak[$, 6). Fourth-order tensors are denoted by upper case letters. e.g. L, A and RhERY
symmetric second-order tensors are denoted by bold-face letters, e.g. &, . The unit fourth- 3{:_* X
order tensor is denoted by 7 and the inverse of a non-singular fourth-order tensor A is e
denoted by 4", TR
Consider a linear elastic solid whose stress tensor, 4. and strain tensor, &, are related t 4
through \ N
ey
o=1s, e=Ms, IM=ML=] ) wohd
L 4
We use a standard 6 x 6 matrix notation for the stiffness tensor L and compliance tensor ';li:;;
M. Since we are here concerned with materials which are at worst transversely isotropic : :ao\
with respect to the coordinate axis Ox,, it tollows that eqns (1) may be written in the form . .:::::
Yo Mg t%
ey
A
\J
T
: ST
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g, PLH L|2 L;; 0 0 0 1 rﬁll |'l:|‘!' :‘.
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[+ - L 33 0 0 0 €3 ( 2) { g A :
T, L44 0 0 €4 .
as SYM Le O € X " ‘
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&) 1 M| 1 AMI b LM] 3 0 0 0 7 i [} ] :l.::!;':’:(:
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My 0 0 » el
€ 44 G4 o :':|:“(‘.
Es SYM M 44 0 Ts E a{ 'i‘..:
_86 L M66 B [ .l!l'lnif
|‘l‘;'0‘ ‘t N
where , :::::::::::::
"3"‘."’3‘
Loy = MLu=Li), My =AMy =Moo @ R
4 .':. )
DoAY
We use the suffix 0 to refer to the initial uncracked solid. Thus, fur example L, is the g
stiffness of the uncracked solid, whereas L is the stiffness of the cracked solid. The volume -‘n';q
concentration of cavities is denoted by c. ’, m;::.:f
It is convenient, but not essential, to develop the theory by considering a family of 0 o ::a.=
aligned spheroidal cavities in a transversely isotropic matrix. A typical spheroid is taken to '.l::.l::;l::
be R
n
2 2 2 P yarvetersd
SIS B ) el
a 7] b O
ety
gt
In addition we suppose all cavities to be of equal size. This assumption is not essential as .‘:0:‘:4“
far as theory is concerned, but may well be essential in any application to penny-shaped ; l'lf‘f‘:
cracks at the ends of broken fibers in a unidirectional composite. Ultimately we will obtain 9
the required results for aligned penny-shaped cracks by allowing the aspect ratio @\ N ;
"
Rl
e =bja ©6) g
S
to approach zero. h !
Many methods have been proposed to predict the effect of reinforcement on the o :
effective moduli of composites. It is not our purpose here to give a critical survey of the t,h‘ J;
various methods. Rather, we give the required formula for the Hashin—-Shtrikman bounds, ‘-,5? z A
the self-consistent method and the differential scheme. h:,\‘ RN
In order to get the Hashin-Shtrikman bounds we refer to the work by Willis{14]. We AR ]
assume that the cavities are randomly located so that the cracked solid exhibits overall Al !
transverse isotropy. Since this envisaged distribution of oblate spheroidal cavities will ; T
conform to the statistics assumed by Willis[14], it follows that the overall compliance of .:.'s’l. N
the cracked composite must satisfy 'i:; (
L) 'g‘ "' ~
. c » O, RJ" N
M2My+ — Qo . (7) Skl
l-c¢ ®
o
Here Q, is a tensor which depends on the uncracked compliance M, and the aspect ratio A N ::
¢. The components of @, can be found explicitly, see Laws and McLaughlin[12] or Laws{15]. } :,%::.:::,
iy
"
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The right-hand side of inequality (7) is the Hashin-Shtrikman lower bound for M, denoted
here by M -

- = £ o:
M —M°+l—c 0 - 3

Since the damaged material contains cavities the Hashin-Shtrikman upper bound for M is
here infinite.
Next we recall that the self-consistent estimate is given by Laws et al.[5] as

M=M+cQ " €))

Finally, it is easy to read off the differential scheme estimate from the work of McLaugh-
lin{16]

M
3 "= (10)

with
M=M, when c=0. an

In terms of the stiffness tensor L it is easy to show that the upper bound L* is given by
c -1
L =[Mo+l—~_—c-Qa'] . (12)

Also the self-consistent result is
L= LyI+cQ 'Lo]™' (13)
whereas the differential scheme gives

dL r
o= CTole'L (14)

with
L=L, when ¢=0. (15)

We now obtain the required results for penny-shaped cracks by proceeding to the limit
as ¢ — 0. Let n be the number of cracks per unit volume then

where the crack density parameter a is defined by

1 =8na’. (16)

Note that the crack density parameter is nor the same as the crack density parameter

R
-};, :
s

e
o
=

x
E
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introduced by Budiansky and O'Conneli[2]. The choice of eqn (16) is motivated by the fact \_-;,: ; r::"::
that a = ] corresponds to an average of one crack of diameter 2a in each cube of side 2a. ot c::,
In applications of the theory to composites reinforced by aligned continuous fibers, Rl it
the crack can, in the first instance, be visualized as a fiber break which has extended into e
the surrounding matrix and has been arrested by adjacent unbroken fibers. This crack is
then regarded as a crack in an effective composite medium. For practical purposes it is ) ..:c‘}
desirable to relate the radius of this crack to the fiber radius, r;, and the fiber volume :" '1:.%::
fraction, v;. Estimates can be obtained in various ways. For example if the microstructure .,::dtf.:.:
is such that the fibers are located in a close packed hexagonal array and that failure of one %‘..‘i‘.
fiber creates a crack which extends through the matrix until it reaches the surfaces of ettutle!
neighboring fibers, then the resulting penny-shaped crack has radius Sttt
; ;
2 \V2 g o
a= rf{(—") 3t 1}. a7 RS
o F
A
DLtV
In the same spirit one obtains the estimate P
0':;::".3:::3
n 12 I'Q!..gl""
a=rd(Z) -1 (18) o
Uy yl‘qﬁ‘; (N
\ l::\!.‘

for a square array. For typical volume fractions occurring in practice the hexagonal array
estimate exceeds the square array estimate by about 13%.

As noted by Eshelby{17] in the isotropic case, and by Hoenig{[7] and Laws[15] for
orthotropic materials, the limit as ¢ approaches zero needs to be handled with care. The
essential point here is that whereas Q becomes singular, the product ¢Q ' remains finite.

L

Pt Sl )
.

Thus let
limeQ~' = A PR
£—0 \
- ..: Ry -
with an analogous definition for A,. The components of A are given in the Appendix. :‘-,-. ::'.:
In the limit of aligned penny-shaped cracks it now follows from eqn (8) that \"‘ .o:!‘
_ n TTR
M~ = My + caho. (19) 5,%
, %-. e
Further, the self-consistent estimate is obtained from N
R D) ¥
M=M,+>aA (20) LS
6 2, i
o0
whereas the differential scheme yields i %
(9 .'. * 5
h‘} UV
M eI :
& 6 TR ]
N
R
The dual formulae for the stiffness tensor are %& ‘
{\ AT
iy
. o RGUL
L* = L0[1+ gaAoLu:l (22) [ )
r.‘m -..
IS
the self-consistent result being PR
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n -1
L= Lo[l+ gaALo] (23)
and the differential scheme giving
dL n
— = —-LAL. 24
A= 6 (24)

Since the only non-zero components of A (shown in the Appendix) are A, and A,,
(= Aj;) it follows from eqns (20) and (21) that only M,; and M,, (= M) are predicted
to change. This is, of course, only to be expected. :

It is instructive to consider the rather special case when the uncracked body is isotropic.
Thus let £y, v, be respectively the initial Young's modulus and Poisson’s ratio. Then, from
the Appendix, we see that

)
0 =
A33 ﬂEo
A0, = 8(1~vj)
T nEo(z—"o).
With the help of a standard notation
1 1
Mn = E:~ Mu = L
it now follows from eqn (19) that
E! 1
o S L 25
E, I+ 1a—») @
Gt 1
- (26)

Gy 1+3a(l=v)(2~vg)

We emphasize that eqn (25) is precisely the formula given by Taya[9]. Hence we see
that the Mori-Tanaka[19] back-stress analysis, which is used by Taya[9]. yields the non-
trivial Hashi~—Shtrikman bound. It is noteworthy that it is possible to show that the assump-
tions of the Mori-Tanaka[19] back-stress analysis lead to formulae which are coincident
with the Hashin-Shtrikman bounds in other situations—but we do not include details here.

We remark that there is no difficulty in obtaining eqns (19)-(21) by direct methods
instead of using an argument based on cavities. In fact Gottesman et al.{4] have given such
an argument to obtain the bounds and self-consistent results for a solid with slit cracks.
We note that the fully general analysis is given by Laws and Brockenbrough{10].

Numerical results can be found from eqns (19) to (21) or from eqns (22) to (24). In
practice. we have found it easier to evaluate the compliances from eqns (19) to (21) and
then to determine the stiffness, when required. by matrix inversion.

For the most part we present results for the loss in stiffness of unidirectional fiber-
reinforced materials containing a distribution of penny-shaped cracks with common orien-
tation perpendicular to the fiber direction. In other words we attempt to model the loss of
stiffness of unidirectional fiber-reinforced materials due to fiber breaks. Data for the
uncracked composite is taken directly from Table 2 of the paper by Dvorak er al.[6] which
1s for a T300/5208 graphite-epoxy system with volume fractions ¢, = 0.2, 0.4, 0.6. As noted
earlier the only compliances which change are M,;. M, (= M;). In Figs | and 2 we give
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Fig. 1. Longitudinal compliance for various T300/5208 systems: (a) s.c.m. ——; (b)d.s. ———~.

o
o

0.4
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Fig. 2. Longitudinal shear compliance for various T300/5208 systems: (a) s.c.m. ———;
(byds ----.

the self-consistent and differential scheme predictions for these two compliances. There is
no need to display the Hashin-Shtrikman bound since it coincides with the common tangent
at @ = 0. We observe that for each value of ¢ the self-consistent result is always greater
! than the differential scheme result. For small a (<0.1 say) the two results for M, are
{ coincident and equal to the Hashin—-Shtrikman bound. On the other hand, we see from Fig.
2 that there is virtually no difference between the self-consistent, the differential scheme and
the Hashin-Shtrikman results for M, for x < 0.5. Thus for practical purposes it suffices
to take
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where AJ, can be found from the formulae given in the Appendix. ._.:\f.\-'r_
The presentation of the results is sometimes clearer when we use the respective Young’s 5:_:::.'. t
moduli, Poisson’s ratios and shear moduli. Thus we write '.:f_\-q:.',: :
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Since the only changed compliances are M,;, M,, and M., it follows that E; and G; are N OEAA
not changed by the introduction of cracks. Also the only Poisson’s ratio which is changed L d
is vy r (for transverse contraction due to longitudinal extension). Results showing the -~ "'?,;;
reduction of E; and G are given in Figs 3 and 4, respectively. In both cases the Hashin- .::.- v
Shtrikman bound is nontrivial ; actually :.' i
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Fig. 4. Longitudinal shear modulus for various T300/5208 systems: (a) bound R
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We note that the seif-consistent estimate for both £, and G, is always lower than the
differential scheme result. Clearly both results are consistent with the Hashin-Shtrikman
bound.

As for the reduction in vy ; we note that since M,; = M{; and M,; = M,,, it follows

that

Hence the fractional reduction of v ; is equal to the fractional reduction of E;. Also the
actual reduction in v, can be found from the reduction of E;, merely by a change in scale.
For clarity Figs 5 and 6 display only the fractional reduction for E; and G, when ¢; = 0.6.
We remark that the appropriate curves for ¢; = 0.2 and 0.4 are almost indistinguishable
from the curves indicated in Figs 5 and 6. By way of comparison Figs 7 and 8 show the
fractional reduction of £, and G for an isotropic material with Poisson’'s ratio v, = 0.3.
Two remarks are in order. First the fractional reduction curves indicated in Figs 6 and 7 are
insensitive to the choice of Poisson’s ratio: 0.2 € v, < 0.4. Second the fractional reductions
indicated in Figs 5 and 6 compared with those in Figs 7 and 8 show that there is no
possibility of constructing *‘master curves” for anisotropic materials.

4. ENERGY RELEASE RATES

In this section we calculate energy release rates for two different mechanisms of crack
growth. First, we consider a solid which contains a family of cracks each of radius a and
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Fig. 5. Normalized longitudinal Young's modulus for the T300/5208 system with ¢, =0.6:
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Fig. 8. Normalized longitudinal shear modulus for isotropic materials with Poisson’s ratio = 0.3:
(a) bound c(B)ysem ———~;(c)ds.-oe - .

allow each crack to extend by the same amount. Second, we consider a single penny-shaped
crack in an otherwise homogeneous (cracked) solid. We show, inter alia, that the differential
scheme enjoys a peculiar status in that it predicts equality of the two energy release rates.

Thus we first consider a solid containing a family of aligned penny-shaped cracks each
of radius a. The corresponding crack density is a. The solid is subject to macroscopically
uniform loading with applied stress &, which is also the average stress. All cracks are
assumed to be open. The total energy of the cracked solid is

E(@:%J;a'st—J;T‘u ds 1))

AV
where T, u are respectively the tractions and displacements on the boundary S. It is easy ::
to show that eqn (27) may be rewritten in the form : ..:

0

E(@) = —iVé-M(x)6 when a # 0, 28)
st
Ey = —iVé My6 when o = 0. :I‘::::

g
Thus the total energy released by the introduction of cracks is (E, — £(2)). Accordingly the ! '.'0‘
energy released by each crack, W(a), is given by ¢

e

Eo—E(x) S5y
W) == nv Q
| (29) i‘;
= —d[M(2)— M)é. D,
2 { 0] ‘f.- o
L’J‘-"
Suppose now that each crack extends from radius a to radius (a+ da) while the total ’
number of cracks remains constant. This corresponds to an increase in crack density from t»c*
2 to (x+éa). The crack extension force, or energy release rate per unit length, G,, of each el
crack is given by e
%
1 W da ) X
A7 2na ¢x da’ ¢ L
!-‘l
Here the subscript A is used to signify that G, is the energy release rate of each crack when ﬁ %
all cracks extend simultaneously. From eqn (16) e
e
J
W,
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iRs
da ) o y,
3= 24na ety
so from eqns (29) and (30) ) 'u:.'::{
A
1 0
6a . oM Wiy
=—6'—4. h
e Y SN
The lower bound M~ in eqn (19) gives 0;;";
."'(
. QA
Gi = aé-Aoé ' ::s.{o'::::
X "'::" '
while the self-consistent estimate of M in eqn (20) yields Yttt
[ ]
dA it
Gr=aé|A+a—|d N
da :' ,::«,:'a.t
AU
NERI
. . . 00
and the differential scheme result, eqn (21), gives ":::::::t
G, = aé' Aé. r.'.?&::-\'
it '
Next we focus on a single penny-shaped crack in the cracked solid. We now regard the '::ul‘ T
cracked solid as a homogeneous medium with effective compliance M (a). Only one crack O ::
is now present in this effective medium and we wish to determine the energy release rate, $ .:'i,
Gs, for extension of this single crack. ’ '
In these circumstances we can use the results of Laws{15] to obtain the required energy 0T o
released by extension of this single crack of radius a '.:. :;,:,:
OOOCIU0
QOO
O O]
&(a) = ina’d- Aé. :f’:‘ﬁ::ﬁ.:
‘i.:‘!"ﬁh
" ‘!la‘!’f
Hence
TICRCR RS
LAt
1 o8 S det
= — = ag " [\ -_ 2 ‘ ' \
Cs 2na da ae ig ¢2) \lk"::b
- * “’.":
. . . . . . w
We emphasize that different models give rise to different values of M. Since the components Mm \
of A are given in terms of the components of M by the formulae of the Appendix, it follows il
that each of the three models gives rise to a different value of A and hence of Gs. hU ﬁ
Whether we consider all cracks simuitaneously growing in self-similar fashion or a % .u":
single growing crack, it is clear that both G, and G are average crack extension forces. Of M‘- B,V
course if we are considering crack extension in a single phase brittle solid there is no x‘-_\j
. . . S \$ )
conceptual problem. However, in the case when the cracks are located in an effective LG
composite matrix some further comments are in order. Thus consider an arbitrary growing _
penny-shaped crack in a unidirectional fiber-reinforced composite—with the plane of the ity
crack perpendicular to the fiber direction. In the first place this crack will arise from a fiber ) "l.":&:‘
break followed by extension through the matrix until the circumferential crack tip reaches h \::‘.l, v
. . . . . . . h LX) l'
neighboring fibers. If there is further growth then part of the crack tip must lie in the matrix X :.’o,
material whereas the remainder must lie in the fibers. Since here we consider cracks in an i,
effective solid it is clear that the energy release rates G, and Gs do not apply when the crack @
radius is smaller than the value given in eqn (17) or eqn (18). However, for subsequent Q.;u;i
growth an average crack extension force is precisely the quantity which is demanded by the ) ",:
physics of the problem. Yagt u.:‘ol:
Taya[9] has reported some work on the second case (Gs) but his work appears to have . .':I::.t::.
little in comnmon with the work described here. ity Ve
Ry Regt
#'N!F' “.s
A e Ap T POk LA ¢ L ; y LA o 0 y PNy ¥ O VON AT ALY I'i
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Fig. 9. Ratio of energy release rates for various T300/5208 systems according to s.c.m.

From eqns (21), (29) and (30) we obtain the surprising result that the differential
scheme predicts that G, = Gs. Thus the differential scheme can provide a useful border
between those models which predict G, to be greater or smaller than Gs. However, one
ought to bear in mind that there is no a priori reason why a particular model should not
give G, > G for small « and yet G, < G; for large a.

Since a general analysis of eqns (29) and (30) is complicated by the fact that both refer
to mixed mode loading, we concentrate on mode I loading in which the only non-zero
applied stress is §,,. From eqns (31) and (32) we have

G _ 6 dM;s/da
Gs - T An '

It is perhaps useful to emphasize here that both G, and Gs depend upon crack density. This
may be contrasted with the usual situation in fracture mechanics wherein a single crack
extends in a material of fixed properties. Nevertheless we see from eqns (31) and (32) that
if GA/Gs = 1 extension of all cracks is indicated rather than extension of a single crack.
When G,/Gs < 1 the opposite conclusion applies.

Numerical results can be obtained for the T300/5208 graphite—epoxy systems con-
sidered earlier. In particular Fig. 9 shows the self-consistent and (trivially) the differential
scheme estimates for G,/Gs. Since G,/Gs = 1 both models suggest extension of all cracks.
By way of comparison Fig. 10 shows the results for initially isotropic solids in which
case the value of G,/G; is insensitive to the choice of initial Poisson’s ratio in the range

A fur:her general conclusion on energy release rates for a single crack can be obtained
from eqn (30) and the results of Section 3. For simplicity consider the mixed mode loading
G4 # 0, &35 # 0 so that eqn (30) reduces to

Gs = al13(633)" +ala(d23)%

Thus A,, and A,, may be interpreted as energy release rate factors. Indeed Figs 11 and 12
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contain the self-consistent and differential scheme results for A5, and A, for the T300/5208
systems considered earlier. It is clear that both models predict that at fixed crack density,
A;; and A4, decrease as the volume fraction of fiber increases. Hence Gs decreases as the
volume fraction of fiber increases in agreement with some results of Taya[9). Further it is
evident that, for fixed ¢, Gs increases with a.

Finally, we note that in the fibrous composite medium the crack density will increase
gradually under incremental load, as a result of fiber breaks at randomly distributed
locations. Each new crack will require for its formation at least the same amount of crack
energy as the first crack, i.e. W(x) = W,. Equation (29) indicates that this will be the case
for all models considered herein, Therefore, progressive cracking is governed by spatial
variation of fiber strength ; sufficient crack energy is available for each fiber break to produce
a new crack.
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" APPENDIX
For completeness we give here the formulae for the non-zero components of the A tensor, defined in eqn

(18), for a penny-shaped crack in a transversely isotropic material. The crack lies in a plane normal to the axis of
transverse isotropy. As is shown by Laws{15j

- 2y (7 +72) M~ M1,

Ay X M,
At = Aue = AWy +r ) MY -MI) M)
“ » (M QM)+ +y) (M + M) (M, ~M )

where 7? and 73 are the roots of
(M3 =MI)X = (M My +2M (M~ M\ )DIx+ M My, - M}, = 0.

When the material is isotropic with Young's modulus E and Poisson’s ratio v, it is easy to see thaty, =y, = |.
Hence

These results are in complete agreement with those of Eshelby{!7].
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FATIGUE DAMAGE MECHANICS OF METAL MATRIX COMPOSITE LAMINATES

GEORGE J. DVORAK AND EDWARD C.J. WUNG
Department of Civil Engineering
Rensselaer Polytechnic Institute

Troy, New York 12180, U.S.A.

ABSTRACT

In their paac work, Dvorak and Johnson had shown that fatigue damage in
metal composite laminates takes place when the applied loads cause cyclic
plastic straining in the matrix. The present work describes an incremen-
tal analysis of the plastic deformation and damage accumulation processes
in elastic-plastic composite laminates., 1t is based on a strain space
formulation of a plasticity theory of fibrous composites and on a self-
consistent analysis of stiffness changes and local fields in cracked
fibrous layers which has been extended here to elastic-plastic laminates.

1. INTRODUCTION

In most fiber composite systems, the strength of the fiber far exceeds
that of the matrix, hence damage caused by matrix cracking is commonly ob-
served in fibrous composites and laminates. This 1is certainly an unwel-~
come disadvantage of composite materials, and of many other heterogeneous
media such as concrete and rocks, which 1s not encountered to a similar
extent in metals and indeed in moat macroscopically homogeneous materials.
The difficulty with composites is that damage may start at relatively low
overall loads which do not utilize the superior strength afforded by the
reinforcement. Typical consequences of damage are reduction of stiffness,
redigtribution of internal stresses which may impair strength, and expo-~
sure of the microstructure to possible environmental attack.

In some systems and in certain applications, damage does not cause
significant problems. For example, the loss of stiffness and strength
that may be caused by cracking of a polymer matrix is often quite small,
because the matrix itself makes only a limited contribution. On the other
hand, mechanical properties of metal and ceramic matrix composites are
more sSensitive to the effects of matrix damage because the matrix may
carry a major part of the applied load in these systems.

In the last fifteen years, damage modeling and analysis have decome a
major activity in mechanics of composites. Recent surveys by Hashin
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(1983) and Wang (1984) describe some of the earlier work that pertains to
brittle, mostly polymer systems. Since the geometry and evolution of
damage in composites are often rather complex, predictive modeling of the
process and of its consequences is very difficult. These problems seem to
be magnified in metal matrix systems where damage 1s seldom caused by
monotonic or short variable loads, but frequently appears under sustained
cyclic plastic straining which leads to fatigue cracking in the matrix.
This particular problem is the subject of the present paper. While cer-
tainly not denying the difficulties involved, we outline a relatively

simple micromechanical approach to fatigue damage analysis in metal matrix N
compogite laminates. The next section presents some essential results NGy
which evaluate the effect of transverse matrix cracks on thermomechanical .ftj@{”
properties and stress distribution in an elastic fibrous ply. Section 4 Lot
(]

reviews some basic concepts of plasticity of fibrous composites. Section
5 is a discussion of certain physical aspects of damage development in
mecal macrix laminates which identify damage as a shakedown mechanism, and

-
-
4

=

§250s

> -
s
0 o o

pave the way to quantitative modeling of damage development. The details ‘?M
of the analysis are omitted here, but selected results are used to illu- _” \q
strate the key results. NI
&
¥ %*m
oy
2. ELASTIC PROPERTIES OF A CRACKED PLY ;::::.;2:':
) t' ]
The first step in the analysis is the evaluation of overall compliance and _’#ﬁh@
stiffness tensors of a fibrous ply which is embedded in a laminated plate t"
and contains a certain density of transverse cracks, Fig. 1. For modeling <o ‘ﬁ
purposes, the cracks are represented by aligned slit cracks which extend :¢#” “q
in the fiber direction that coincides with the x3 axis in the local co- uﬁ§$ &
ordinate system of each ply. The remaining parts of the laminate are re- i&ﬁ]"
presented here by layers of thickness b and b'. In reality, the cracks AKX
are not uniformly spaced but their average density in a large representa- vy

tive volume V of the ply can be described by a crack density parameter
B = 4a2n/V, where n is the number of cracks in a unit area of the trans-~
verse x1x7 plane, and 2a is the crack width equal to the ply thickness.
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| X3 Fig. 1 Schematic representation S

— z | _ 1 of transverse cracks in _:j

a fibrous composite ply. ey
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Suppose that the stiffness and compliance tensors L, and M, of the
ply are known in the undamaged state. These quantities can be estimated
in terms of fiber and matrix moduli and fiber volume fractions by approxi-
mate averaging techniques, or bracketed by the Hashin-Rosen bounds. Exact
evaluation of the corresponding tensors for a damaged ply would have to
account not only for the interaction between the cracks, but also for the
interaction of each crack with the adjacent plies of arbitrary orienta-
tion. To circumvent the considerable difficulty posed by these inter-
actions, and particularly by the latter, we assume that the properties of
the cracked ply can be approximated by those of a homogeneous medium which
contains a certain density of aligned slit cracks of width 2a. Then, the
overall stiffness L(8) and compliance M(B) at certain crack density B can
be determined by the following self-consistent approximation, originally
suggested by Budiansky and O'Connell (1976).

In the absence of cracks, the potential energy of a homogeneous body
of volume V, under uniform overall stress ¢ can be written in the form

Bo = -3 Voo, W

The energy released by formation of a single crack in the homogeneous body
can be written in terms of a certain crack tensor Qo as:

aly a2
W=7 a®g.ho. (2)

Now, 1f many aligned slit cracks are introduced in such a way that the
body remains statistically homogeneous, then the effect of interaction
between the cracks on the energy released by a single crack can be ex-
pressed in terms of

W(B) =2 7 a2 g.A(B)g, (3)

which is equal to the energy released by a single crack in a homogeneous
medium of compliance M(B), or stiffness L(B), Of course, the number of

cracks in the volume V is equal ton = BV/4a2, Therefore, the potential
energy of the medium with open slit cracks of density B can be written as

- F VMBI = -3V aHog -3t aZ g.A(B)Y . )

This must hold for any V and 0, hence the effective compliance of the
cracked medium is

M(B) = Mg+ 7 B A(B). (5)

Next, use the identity ML = M L, = I, where I is the identity tensor, to
find the effective stiffness -

L(B) = Ly - % B Ly ACB) L(B) . (6)
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Evaluation of the crack tensor A(B) in a transversely isotropic medium
with aligned slit cracks was described by Laws, Dvorak, and Hejazi (1983),

and Dvorak, Laws, and Hejazi (1985).

The overall thermoelastic constitutive equations of the cracked ply
can be written in the form

g=Le-81 , e=Mo+bum, &)

where m is thermal strain vector of expansion coefficients and L = Q(B)g
is the thermal stress vector. One can establish from the above analysis
that @ = m, of the undamaged state, and that £ = [I - BL(B) A(B)]%,.

Also, 1f the overall strain of the cracked medium is written as the sum

€ (8)

€E=c + ,

- o "¢
of the average strain €, in the uncracked ligaments, and the average
strain €, accommodated by opening of all the cracks, then Dvorak et al.

(1985) show that

€ =A €-8a , € = A € -0 a (9)
) o "o "¢ Te " ~c
where
1 1
Bo =1 -7 "BAL=M L, A vz TBAL=M (-1 (10
S8o=-77"BALu=-Acm s ~3TEALavAm (11)

and A = A(8), L = L(8).

Similar results can be developed for cracks in zero-degree plies.
Such plies typically contain matrix cracks on planes perpendicular to the
fiber. In well-made systems such cracks bypass the fibers, and the cor-
regsponding crack geometry must be analyzed, c.f., Wung (1987).

3. RELAXATION SURFACES

Plastic deformation of heterogeneous media is a very complex process. The
initial stages are dominated by local yielding at inhomogeneities, but
such contained plastic flow does not significantly affect overall stiff-
ness. Indeed the onset of overall yielding is typically associated with
extensive plastic straining in the aggregate. One may then assume that
the overall yield condition of a fibrous ply can be expressed in terms of
the matrix yield condition and the average matrix stress. Recent experi-
mental observations of plastic behavior of fibrous composites (Dvorak

et al. 1988) suggest that in certain but not all cases the experimentally
detected overall yield surface of the composite medium can be approximated
in this way. Several composite plasticity models have been developed
along these lines; in the sequel it will be convenient to use the strain
space formlation of Wung and Dvorak (1985).
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Let the matrix relaxation condition be expressed in the Mises form

T 2
-B)Ce -B)-k =0, (12)
]

2
g (¢ -8) =2 (e
“m n n n

mm m
where Gy is the matrix shear modulus, C is a constant matrix, €y is the
matrix strain, §, is the position of the center of the relaxation surface
in €, space, and k is the matrix yield stress in simple shear. If the
matrix strain concentration factors are written in the form used in (9),
then the composite relaxation surface in the overall strain space € 1s:

2 T T 2
g(c -8) =26 (-8 A CA (-8 -k =0, (13)
m mc mc

where the concentration factors Ap. must be derived from a chosen model of
the composite microstructure. This, and the development of hardening and
flow laws which can be applied to fibrous plies in a metal matrix laminate,
was described in the above reference.

When a system of cracks of density B exists in a ply which has under-
gone some plastic strain €, followed by unloading, the total strain in the
layer with fully open cracks can be written as

€ =Moo +¢e , oco=Le+a (14)
~ - -~ ~p -~ -~ -~ .R

where M, L are given by (5) and (6), € is the plastic strain, and Og is
the relaxation stress which is given by o = L €pe Of course, the un~
broken ligaments in the ply are now regarded as an effective homogeneous
material which has the properties of the composite. At the onset of
further plastic loading the ligament material carries, on average, the
part of overall ply strain given by A, in (10). Again, this strain is not
uniformly distributed in the ligament. However, if one extends the argu-
ment leading to derivation of the relaxation surface of the undamaged
composite to the present case, the relaxation surface of the damaged ply
with open cracks is obtained in the form

2 T T 2
g (E -B) =26 (¢ - B) (A A) C(A A)(e -8) -k =20 (15)
8 “ o " - “me "o ~ ~mec "o ~ -

When the cracks are closed, the relaxatlion surface of the ply is again
given by (13), but adjustments must be made if the cracks close with a
relative shear displacement which cannot be adjusted by relative sliding.
The distinction between open and closed cracks is determined by the in-
equality that assures crack opening:

¢ ° 5o (16)
€ = € - £
22 22 22 ’

in the coordinate system of Fig. l.
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Fig. 2 shows an illustration of relaxation surfaces (I1S5) of a (0/90)s
laminated plate subjected to in-plane uniaxial load from 0 to 500 MPa and
to load cycles from 500 MPa to 50 MPa. Note that a steady state response
is obtained after the second cycle. In this example, the matrix follows

the Ziegler hardening rule, details of the
Wung (1987). The surfaces and the loading
fn-plane strain coordinates €,;, €33. The
strains, which are equal in all plies; the
fiber orientation in the 0° ply, and x; 1s
Ply. In this illustration, the relaxation

N XY Y A~y g

been transformed into the laminate strain coordinates. The ctracks have
been added after completion of the load cycle, and the relaxation surfaces
(15) are therefore plotted from the end position at 50 MPa. The dashed
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calculation were described by
path are plotted in the

top bars indicate laminate

x3 direction coincides with the
the fiber direction in the 90°
surface equations (14,15) have
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Fig. 2 Motion of ply relaxation surfaces during first and second loading
cycle, and expansion of the surfaces at different values of the
damage parameter 8.
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line indicates the crack opening condition (16). As one would expect, a
larger overall strain is needed to cause the initial yield strain in the
matrix of a cracked ply. Therefore, the open crack branches of the relax-
ation surfaces expand with increasing crack density. Again, the scalar 8
denotes the crack density, while the vector B defines the position of the
center of the relaxation surface.

4. THE DAMAGE PROCESS

Damage development in metal matrix couaposites is often observed only under
sustained cyclic loading in the platic range. The damage process in these
systems has many unusual aspects which deserve attention since they affect
the subsequent modeling and analysis.

We focus on a laminated plate which consists of many fibrous layers
which at all times remain perfectly bonded. This constrains the plies to
identical in-plane strains, and a fairly straightforward procedure based
on laminated plate theory can be used to derive overall plate properties
from the ply properties. In what follows we asgume that all plies are
made of the same composite material, the only distinction between the
plies being the in-plane orientation of the fiber which also determines
the orientation of cracks. Of course, laminates made of dissimilar plies
can be considered as well. The plate is subjected only to in-plane
mechanical stresses which are aasumed to be uniform, and also to a
spatially uniform change in temperature.
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Each ply consists of an elastic-plastic fibrous composite medium; the
macroscopic elastic response of a ply is described by (7), with the over-

all properties, L,, M, in the undamaged state, and L(8), M(8), given by - ¥
(5) and (6), in the presence of damage. The elastic state terminates when gt
the stress state in any ply satisfies the yield condition (13) in the un- & % ﬁ
damaged state, and also when (16) is not satisfied in a damaged ply. } oy
Similarly, (15) and (16) describe the yield condition of a damaged ply.

B ]
T

Normality of the plastic strain increment to the matrix yield surface
guarantees anormality at the ply and also at the laminate level. This
opens the way to formulation of constitutive equations in the plastic

range.

L e

Under cyclic loading of a metal matrix laminate in the plastic range,

the plastically strained plies eventually develop a certain fatigue damage WSS

state which is dominated by transverse cracks of the type shown in Fig. 1 y:a;¢
(Dvorak and Johnson 1980). However, other types of damage such as local- f}ﬁ}f‘
1zed delamination at the fiber-matrix interface and between plies, as well RTINS
as fiber splitting by the transverse cracks are frequently observed. Of 'a}}}i‘

course, when two adjacent plies have transverse crack systems, the cracks ®
will intersect at ply boundaries. In fact, if the laminate is made of RNt

momolayers reinforced by large diameter fibers, such as boron or silicone ﬁf;“'

carbide, the ply boundaries are not well defined and cracks in one ply 'ﬁ»ﬁt

will extend up to the layer of inclined fibers in the next ply. Modeling R
of the various types of damage would be very difficult. However, one may Cf{fg&

account for the additional damage by increasing the effective density of ®
transverse cracks in each ply. This can be understood as addition of more S
cracks of width 2a to those which are physically present, or as a magnifi- ,55* W
cation of the width of the existing cracks. The second alternative N
appears to be more plausible as it may well represent the actual reason iﬁhﬁh’
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for an increase in W(B) in (3), which is the extension of the existing

cracks by delamination and ply boundary crossing. Then, the 8scalar B may
no longer be regarded as a measure of the actual crack density, but as a
damage parameter to be used in the results of Section 2, which are still
supposed to predict the effect of damage on stiffness and on averages of

local fields.

The experimental results of Dvorak and Johnson (1980) on B/AL lamin-
ates, as well as subsequent studies by Johnson on S1C/Ti plates suggest
that cyclic plastic straining of the matrix is the principal cause of
fatigue damage growth. No damage is typically observed if the laminate is
loaded by an elastic load cycle, either in the initial or shakedown state.
This argument can be extended to damaged laminates. In particular, omne
can assume that all damage growth will terminate if the laminate reaches
an elastic deformation state. As illustrated by the example in Fig. 2,
elastic deformation can be restored under an initially inelastic cycle of
loading, if the amount of damage in the plies, and the applied strain
cycle cause, respectively, expansion and translation of the ply relaxation
surfaces such that the prescribed load cycle or the correaponding strain
cycle can be accommodated within the new elastic range. The damage
evolution process can then be regarded as a mechanism that the composite
laminate employs to reach an elagtic state. In this new state, the
originally inelastic part of the total strain in each ply is accommodated,

in part, by the strain €. caused by opening of the cracks.

Viewed from a different perspective, the damage process can be thought
of as a part of a shakedown mechanism in the composite laminate. Accord-
ing to the static or Melan shakedown theorem, an elstic-pla .ic solid or
structure will shake down if any admissible residual stress field can be
found such that its superposition with the stresses caused by the applied
loading will not violate the yield condition anywhere in the solid. 1In
other words, the laminate will shake down if a subsequent yield surface,
or its relaxation surface counterpart in the strain space, can be found
which contains the applied load or strain cycle. Of course, shakedown can
take place only if the structure is loaded within its failure envelope, and
if early collapse by incremental plastic straining can be prevented. That
is usually the case in laminated plates where the elastic fibers support a
major part of the load so that the total strains are small, yet substan-

tially larger chgn the initial yield strains of a ply.

It is useful to point out that cyclic plastic loading of the laminate
creates cyclic plastic strains in individual plies which, as illustrated
again by Fig. 2, tend to reach a steady state after relatively few cycles.
On the other hand, the plastic deformation cycle also promotes low cycle
fatigue damage growth which, in comparison, proceeds very slowly. Typi-~
cally, several thousand cycles may be needed to cause a significant change.
One may then expect the relaxation surfaces to translate much more rapidly
than expand. The direction of translation should be such as to minimize
the magnitude of plastic work per cycle. Under such circumstances, the
relaxation surfaces will tend to translate into such most favorable posi-
tions which will assure that, the amount of expansion - which is to say
extent of ply damage - will reach only the minimum amount necessary for an

elastic accommodation of the loading program.

Another consequence of the large disparity between deformation and
damage rates is that in each damage state, or at a particular magnitude of
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8 under a prescribed load or strain cycle, the effect of past deformation
history will fade very quickly. That is to say that the deformation field
in the laminate at a particular state of ply damage will be very similar
to that which one would reach if this amount of damage was introduced ianto
an elastic laminate prior to the application of the corresponding load

Of course, that does not suggest that the final shakedown state’

cycle.
may be reached by purely elastic deformation of an initially damaged
medium. We recall that damage causes only expansion of the relaxation —
surfaces. But if translation is also needed due to the minimum damage ASANS
H requirement, the shakedown state under the prescribed -load or strain cycle !
may be reached only after several cycles of plastic straining which may be y?&dé
needed to bring the respective ply relaxation surfaces to their final anqﬁ
location. However, the implication is that the final deformation state in gﬁh.&
a damaged laminate subjected to a constant load cycle is independent of @
previous loading and damage history. Therefore, in arriving at a final gy
damage state, one may follow any convenient path. For example, the damage M“
analysis of the typical case of constant amplitude loading, which causes “.QHﬂ
large excursions into the plastic range during many initial deformation b W
cycles, can be replaced by analysis of damage caused by a load cycle which “ﬁﬁ
expands at a rate comparable to that of damage growth. In this particular ..
case each increment in amplitude is followed after few cycles by a ) ytri'
saturaion damage increment which restores elastic straining within a new v j&?i:
shakedown state. : (e
- . by
0f course, the independence of the final damage state on the loading Ly :
path would be expected to hold only in elastic-plastic systems which have )
the ability to adjust their internal permanent strain state in response Nl
to current cyclic loading conditions. Apart from the above arguments, ﬁ S
available results obtained in tension-tension fatigue tests of B/AL metal Hji‘q
matrix composite laminates support the path independence concept. For “.-'J
NN

example, Johnson (1982) found that a saturation damage state at a certain o
maximum load amplitude could be reached by dissimilar loading sequences.
Another support for this concept was established by experiments which
showed that the amount of damage in a laminate was determined primarily by
the load amplitude and not by variations of the mean stress.

S N

%

%

St

T

5. INCREMENTAL SHAKEDOWN-DAMAGE ANALYSIS

B

.}
X

We now present some results which illustrate certain aspects of damage de-
velopment in B/AL laminates subjected to cyclic tension loading. Our ob-
jective is to find, for several different load amplitudes, the amount of
damage in each ply that is needed to reach a shakedown state in the lamin-

b
2

ate. Of course, the stiffness loss and the internal stress distribution, NQEaQ
particularly the fiber stress, are also of interest. One specific lamin- WA
ate under consideration, of 0/90 layup, was already discussed in connection N N\q
with Fig. 2. 1In addition, a similar analysis was performed for a 0° plate. :V"\f

L4

The final load cycle we wish to reach is from Spy, = 50 MPa to Spa = 500
MPa in both laminates. The actuyal path we follow starts with cycling of
the laminate to a steady state, as in Fig. 2. Then, while Spi, 1s kept
constant, Sp,, 18 reduced to bring the laminate into an elastic state.
Next, Spayx 18 increased in small increments. After each increment, cracks
are introduced in the plastically deforming plies to the extent needed to
acommodate the deformation path within the expanded relaxation surfaces.
This involves both expansion and translation of the surfaces, which cause
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a new plastic strain state and a stress redistribution through the laminate.
Details of the procedure have been described by Wung (1987). As an example,
Fig. 3 shows the current relaxation surfaces at two levels of Sp,.. Note

Y
Boron/Aluminum Boron/Aluminum
ao (0,90)2. 10 (0.00)u
V¢ = 0.5 Vy = 0.8
20 0 "
. 10| se0re

& 5200
N—

Eo/Ya
[
2
“
°
"
Cas Eo/Ya
-

A
o

(-1

-10
-20
-20
-0 — Losding path
-20 — Loading oath <0 S00:®m 800 MPe, A = 0.1
Sai = 400 MPa 20 10 @ 19 20 W 40 80 @0
-0 - - e
20 -0 O 10 20 30 40 SO0 80 $13 Eu/Ya :_":_EE'}"
33 En/Ym : :;_“f_:..rr.
" s
Fig. 3 Translated and expanded relaxation surfaces of a damaged laminate - :;53?-
at two different levels of S . o RN
max @
XK
I
soo s
Boron/Aluminum
700 ./ . 4 o
g -} NG
e00 s/ ¢
- LEXN
I - N
$ oRn Q.8 N
2 o0
3 TS
Z 400 e
< ke Al
o Fig. 4 The effect of sustained ):.3&«‘1{\
g 300 cyclic loading on re- ':C:"\-" A
3 duction of axial elastic R
® 300 modulus of two B/AR N
laminates. Comparison M‘.‘_’ 0y
100 of prediction with ex- AV
—~ Theoretical prediction perimental results LY
° obtained under constant A
s
‘100 80 80 70 g9 $0 40 load amplitudes. ®

PERCENT OF INITIAL ELASTIC MODULUS
AFTER 2x10° CYCLES



that high values of 8 are required to accomplish the accommodation, as
anticipated in Section 4. The incremental expansion of the loading range
continues until one reaches the desired final magnitude of Sp,..

Fig. 4 shows the change in the axial elastic modulus caused by satu-
ration damage in the two laminates as a function of the applied tension
stress range. The computed results are plotted together with experimental
data of Dvorak and Johnson (1980). In the experiments, the saturation
‘damage state was defined as the damage state after 2x106 cycles at counstant
streas amplitude, as noted in Fig. 4, but actual measurements of stiffness
loss indicated that damage usually stabilized after 5x103 cycles. Finally,
Fig. 5 shows the computed magnitudes of the axial stress in the 0° layer
fibers, in the saturation state at different levels of Spgy. This stress
change has been plotted up to Spax equal to the experimentslly observed
endurance limit. Note that while the endurance Sp,y, are quite different
in the two laminates, the terminal fiber stresses are nearly identical.

The implication is that fatigue failure occurs in these composite systems
by overloading of the 0° fibers. Of course, the maximum stress is not seen
by the fibers until the laminate reaches the saturation damage state at the
enduragnce Spax. In the initial stages of damage development, a part of the
load is carried by the undamaged off-axis plies, but as damage grows more
stress is absorbed by the 0° fibers.

Boron/Aluminum

ar,

Fige 5 Fiber stresses in
zero~degree plies
after damage-induced
s hakedown.
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-

L] 2186 s$00 780 1000
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6. CONCLUSION

The good agreement between experimentally measured stiffness changes and
the predictions derived by the present method, Fig. 4, has also been repro-
duced in an application of the method to fatigue analysis of a (0/:45/90)g
laminate. We recall that the predictions were found for an incrementally
expanding load cycle, while the experiments were performed under constant
load smplitudes. This seems to indicate that the approximations introduced
in the model strike a reasonable balance between simplicity and accuracy,
and that the damage process is actually path independent. Of course, a more
realistic model of the elastic-plastic behavior of the cracked ply would be
desirable. However, the significant results are the identification of the
saturation damage state as a damage-induced shakedown mechanism, and of the
path-independence of the damage process. These aspects of the problem
could be exploited in design of a more efficient approach.
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